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The concept of chaining, or in more general terms, sparse process structure, has been extremely influential in the process
flexibility area, with many large automakers already making this the cornerstone of their business strategies to remain
competitive in the industry. The effectiveness of the process strategy, using chains or other sparse structures, has been
validated in numerous empirical studies. However, to the best of our knowledge, there have been relatively few concrete
analytical results on the performance of such strategies vis-á-vis the full flexibility system, especially when the system size
is large or when the demand and supply are asymmetrical. This paper is an attempt to bridge this gap.
We study the problem from two angles: (1) For the symmetrical system where the (mean) demand and plant capacity

are balanced and identical, we utilize the concept of a generalized random walk to evaluate the asymptotic performance
of the chaining structure in this environment. We show that a simple chaining structure performs surprisingly well for a
variety of realistic demand distributions, even when the system size is large. (2) For the more general problem, we identify
a class of conditions under which only a sparse flexible structure is needed so that the expected performance is already
within � optimality of the full flexibility system.
Our approach provides a theoretical justification for the widely held maxim: In many practical situations, adding a small

number of links to the process flexibility structure can significantly enhance the ability of the system to match (fixed)
production capacity with (random) demand.
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1. Introduction
Recent trends in consumer markets have shown a shift
toward more customized products and faster upgrades
in technology. This has resulted in more product lines,
shorter product life cycles, and higher demand variabil-
ity. For example, the number of car models offered in the
United States market has increased from 195 (in 1984),
to 238 (in 1994), to 282 (in 2004), and is projected to
reach 330 by 2008. The number of plants, however, has
remained stable over those years, bringing down the aver-
age annual units sold per nameplate from 106,819 (in 1985)
to 48,626 (in 2005) (cf. U.S. Department of Commerce
2006, Van Biesebroeck 2007).
Facing such an increased demand uncertainty as well as

heightened market competition, businesses can no longer
rely on capacity, pricing, quality, and timeliness alone as
competitive strategies. In particular, firms need to employ
process flexibility to improve their ability to match supply
with uncertain demand. In an interview with the Wall Street
Journal (Boudette 2006, p. 5), Chrysler Group CEO

Thomas LaSorda disclosed that flexible production “gives
us a wider margin of error.” With regard to the value of
process flexibility, he said, “if the Caliber doesn’t sell well,
the Jeep Compass and Patriot could take up capacity, and
eventually a fourth model will be built, too.”
This recent focus on flexibility as a competitive strategy

can be observed in major manufacturing industries, such
as the above mentioned automobile industry (Wall 2003),
the textile/apparel industry (DesMarteau 1999), and the
semiconductor/electronics industry (McCutcheon 2004).
Moreover, the value of flexibility extends to service indus-
tries, where firms have increasingly employed cross-trained
workers to provide more flexible services. From here on-
ward, we adopt the term “process flexibility” from the lit-
erature (Jordan and Graves 1995, Sethi and Sethi 1990) to
denote “a firm’s ability to provide varying goods or ser-
vices, using different facilities or resources.”
One of the most important ideas in this literature is

the concept of a simple “chaining” strategy. Here, a plant
capable of producing a small number of products, but with

43



Chou et al.: Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure
44 Operations Research 58(1), pp. 43–58, © 2010 INFORMS

proper choice of the process structure (i.e., plant-product
linkages), can achieve nearly as much benefit as the full
flexibility system (where each plant is equipped to produce
all the products). This concept is widely believed to be true
and has been applied successfully in many industries. For
example, Chrysler CEO LaSorda has repeatedly mentioned
the importance of chaining in his interviews and speeches
(LaSorda 2006), while VP Frank Ewasyshyn was recently
inducted into the Shingo Prize Academy for his contri-
butions to flexibility and efficiency (Assembly Magazine
2005).
To illustrate the value of process flexibility and the effi-

ciency of chaining relative to full flexibility, we consider
the following n-plant, n-product example. As in existing
literature, we use a bipartite graph to represent flexibility
structures. On the left is a set An of n product nodes, while
on the right is a set Bn of n facility nodes. A link connect-
ing product node i to facility node j means that facility j
is endowed with the capability to produce product i. We
let � ⊆ An × Bn denote the set of all such links; that is,
the edge set of the bipartite graph. Hence, each flexibil-
ity configuration can be uniquely represented by a bipartite
graph �. Three special configurations we will frequently
refer to are:
1. The dedicated system:

��n�= {
�i	 i� � i ∈ 
1	2	 � � � 	 n�

}
�

2. The chaining system1:

��n�= {
�i	 i� � i= 1	2	 � � � 	 n}

∪ {
�1	2�	 �2	3�	 � � � 	 �n− 1	 n�	 �n	1�}�

3. The full flexibility system: � �n�=An ×Bn.
Figure 1 shows some examples of flexibility configura-

tions for a three-facility, three-product system. Graphs (a),
(b), and (c) are the three respective special configurations
as listed above for the case n= 3.

Figure 1. Bipartite graph representation of 3× 3 flexi-
bility structures.
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Assume that each plant has a capacity of Cj = 100 units
for each j , and each product consumes one unit of capacity
and has an expected demand of Di = 100 units for each i.
Note that the (mean) demand and supply are balanced and
identical in this case. We assume further that the demand is
normally distributed with a standard deviation of 33 units
(so that the probability of negative demand is negligible).
Let D = �D1	 � � � 	Dn� denote the random realization of

the demand. We simulate the expected system sales for the
three special structures. We assume that we first observe the
demand realizations, and then we determine how much of
each product is produced by each plant to maximize total
sales. This boils down to solving the following maximum-
flow problem on n supply and n demand nodes, with pro-
cess structure �:

Z∗
��D�=max

n∑
i=1

n∑
j=1

xij

s.t.
n∑

j=1
xij �Di ∀ i= 1	2	 � � � n	 (1)

n∑
i=1

xij �Cj ∀ j = 1	2	 � � � n	 (2)

xij � 0 ∀ i	 j = 1	 � � � 	 n	 (3)

xij = 0 ∀ �i	 j�
�� (4)

We solve the above max-flow problem for each random
realization of D. For small n (say n = 10), our sim-
ulation shows that the expected sales in the dedicated,
chaining, and full flexibility systems are 864.47, 949.36,
and 955.14, respectively. This demonstrates that chaining
already achieves most (99.39%) of the benefits of full flex-
ibility in this case. A natural question is how well the
chaining structure performs as n increases to infinity. Sur-
prisingly, with the demand distribution given as before, we
will show in this paper that even as n approaches infinity,
the chaining system can still accrue close to 97% of the
expected sales in the full flexibility system! This is impor-
tant because the chaining system requires many fewer links
in its process structure, and thus is much cheaper than the
full flexibility system when n is large, yet is able to accrue
most of the expected sales in the full flexibility system. This
illustrates that, with proper choice of the process structure,
one can achieve nearly as much benefit as full flexibility
with a sparse process structure.
However, the above results were obtained under the con-

dition that demands are independent. If demands are cor-
related, the situation can be very different, as illustrated in
the following. Consider the other extreme situation, when
demands are correlated, with

∑n
i=1Di = n, and

Cj =1	

Di=

n	 with probability

1
n

0	 otherwise
∀i	j=1���	n� (5)

In the full flexibility system, it is clear that the system
can satisfy all demand using available capacity, and
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ED�Z
∗
� �n��D�� = n. On the other hand, suppose that we

use a sparse process structure with O�n� arcs, say �i arcs,
to serve demand for product i, with

∑n
i=1 �i = O�n�� The

expected demand served for product i is therefore �i/n
because each facility has a capacity of 1, and there are �i
such facilities serving product i. It is thus clear that the
sparse system can support an expected flow of

1
n

n∑
i=1

�i =O�1��ED�Z
∗
� �n��D���

Therefore, unlike the earlier situation, there is a significant
loss of optimality if we are restricted to using a sparse pro-
cess structure (like the chaining structure) in our problem.
Our objective in this paper is to analyze and understand

the performance of a sparse process structure, in particu-
lar the chaining structure, under different conditions. We
address the following problems:
1. What is the performance of the chaining structure as

the system size increases, when demand and supply are
balanced and identical? We seek a method that can evaluate
the efficiency of chaining in this environment.
2. What are the appropriate conditions so that a sparse

structure can perform nearly as well as the full flexibility
system? An intuitive definition of a good process structure
is difficult in the general case. Hence, we focus instead on
general structures with a sparse subset of links.2

To address the first question, we use the concept of a
generalized random walk to evaluate the asymptotic per-
formance of the chaining structure in the environment with
identical and balanced demand and supply. Our results
show that the performance of the 2-chain is related to prop-
erties (overshoots and stopping times) of the random walk
model, and we can evaluate the exact asymptotic perfor-
mance of the 2-chain for a variety of realistic demand dis-
tributions. For uniform and normal demands, our method
shows that the chaining strategy already reaps a substantial
portion (at least 89% and 96%, respectively) of the bene-
fits of the full flexibility system, even when n approaches
infinity.
We address the second question in a more general set-

ting. Consider a problem of the form

�P�� Z�b	 
1	 � � � 	 n��

=max
{ n∑
i=1

cixi� Ax� b� xi � 0	 i= 1	 � � � 	 n
}
	

where ci � 0 �∀ i = 1	 � � � 	 n�, A is an m× n nonnegative
matrix, b is random and nonnegative, and n � m. When
b is deterministic, it is well known that there is an optimal
solution x∗ for (P) with support in at most m decision vari-
ables (i.e., no more than m variables in x∗ are positive while
other variables are all zero). There is no loss of optimality
if the other variables are discarded from problem (P). Let
S ⊆ 
1	 � � � 	 n� and

Z�b	S�=max
{∑

i∈S
cixi� ASxS � b� xi � 0	 i ∈ S

}
	

where AS (respectively, xS) denote the columns (respec-
tively, rows) of A (respectively, x) indexed by the subset S.
Our goal is to identify a subset S so that

Eb�Z�b	S��� �1− ��Eb

(
Z�b	 
1	 � � � 	 n��

)
and

�S� ≈O�m�� n�

We need to identify and impose further structural condi-
tions on the random parameters b (or D for the max-flow
problem in Z∗

��D�) to ensure the existence of a good sparse
support set in our problem (or sparse process structure in
the context of the flexibility structure design problem). Note
that the optimal solution for Z∗

��D� in the earlier exam-
ple (5) has the following property: for any i	 j ∈ 
1	 � � � 	 n�,

x∗
ij =


1	 with probability

1
n
	

0	 otherwise	

and hence ED�x
∗
ij � = 1/n. However, x∗

ij = 1 for some de-
mand realization D, which is much larger than the expected
value. It turns out that the difference between the expected
optimal flow and the actual optimal flow (for some demand
realization) is a crucial property we need to control for this
problem. By ruling out such instances, we can prove the
existence of a good sparse support set for the optimization
problem.

2. Literature Review
In the operations management literature, there are two
main streams of research related to flexibility. The first
stream examines the trade-off between flexible and dedi-
cated resources. Fine and Freund (1990) characterize the
optimal investment in flexibility for a price-setting firm,
where demand is modeled by a discrete probability distribu-
tion of k possible states that affect demand. Van Mieghem
(1998) takes a critical-fractile approach to solving the opti-
mal flexibility investment for a price-taking firm, but for
any arbitrary multivariate demand distribution. Bish and
Wang (2004) extend van Mieghem’s work to a price-setting
firm facing different types of correlated demands.
The above studies, though, focus only on full flexibility;

that is, all facilities can produce all products. Unfortunately,
in practice, the acquisition cost of full flexibility is usually
too enormous to permit the recovery of adequate benefits.
In response, a second stream of research looks at different
degrees of flexibility, and examines the value of these types
of process flexibility. The landmark study was by Jordan and
Graves (1995), who introduced the concepts of smart lim-
ited flexibility and chaining. They observe, through exten-
sive simulation, that limited flexibility, configured the right
way, yields most of the benefits (in terms of expected sales)
of full flexibility. Furthermore, they claim that limited flex-
ibility has the greatest benefits when a chaining strategy
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is used, whereby every facility can produce two products
and every product can be produced by two facilities, in a
way that “chains” all the facilities and products. Specif-
ically, their numerical results show that for a 10-facility,
10-product example, chaining achieves about 95% of the
benefits of full flexibility for the class of demand distribu-
tion used in their study. Additionally, in the second part of
the paper, they propose a measure (later called the JG index)
for evaluating different flexibility structures.
Because the twin ideas of smart limited flexibility and

chaining have been well received, significant extensions
arose in different directions. For example, Graves and
Tomlin (2003) extend this work to multistage supply chains,
Gurumurthi and Benjaafar (2004) to queuing systems,
and Hopp et al. (2004) to flexible workforce scheduling.
Recently, Iravani et al. (2005) proposed a new perspective
on flexibility using the concept of “structural flexibility.”
They introduce new flexibility indices and show their appli-
cability to serial, parallel, open, and closed networks. Bish
et al. (2005) go beyond just matching supply and demand
as they study the impact of flexibility on the supply chain.
They show that in a 2 × 2 system, certain practices that
might seem reasonable in a flexible system can result in
greater production swings and higher component inventory
levels, which will then increase operational costs and reduce
profits. To account for partial flexibility, Muriel et al. (2006)
extend the work of Bish et al. (2005) to larger systems.
Brusco and Johns (1998) present an integer linear program-
ming model to evaluate different cross-training configura-
tions in a workforce staffing problem. However, these papers
present limited concrete analytical results.
To strengthen the analytical aspect, Akşin and Karaesmen

(2007) use a network flow model to show that the expected
throughput is concave in the degree of flexibility, and pro-
vide some results on the interaction between flexibility and
capacity. In another study, Chou et al. (2007) analyze the
worst-case performance of process flexibility structures for
a symmetrical system. They adopt the concept of graph
expansion, which is widely used in the area of graph theory
and computer science, to prove the existence of a sparse
partially flexible structure (not necessarily chaining) that
accrues most of the benefits of full flexibility for all demand
scenarios.
The process flexibility problem is intimately related to

the problem of determining the expected amount of maxi-
mum flow in a network with random capacity. Karp et al.
(1993) developed an algorithm to find the maximum flow
in a random network with high probability, but to the best
of our knowledge, the algorithm could not be used to find
the expected max-flow value. For the case when the capac-
ities are exponentially distributed, Lyons et al. (1999) used
the connection between random walk and electrical net-
work theory to bound the expected max-flow value by
the conductance of a related electrical network (where the
capacity of each arc is replaced by the expected capacity
value). The proof technique relies heavily on the properties

of the exponential distribution and hence cannot be utilized
for more general distribution.

3. Balanced and Identical Expected
Demand and Supply

In this section, we consider the case with n plants and
n products, with (fixed) supply and (mean) demand of
� units for each plant and product, respectively. We further
assume that all products have independent and identically
distributed demand Di, which follows a symmetric distribu-
tion around its mean E�Di�= �.3 Because demand cannot
be negative, we assume that Di ∈ �0	2�� for all demand
realizations. Let D = �D1	 � � � 	Dn� denote the demand
of the n products. Let MF ��	D� denote the maximum
amount of production supported by the structure � in the
system (obtained by solving the max-flow problem Z∗

��D�).
For the dedicated and full flexibility system, it is easy to
see that

MF ���n�	D�=
n∑

i=1
min��	Di�=

n∑
i=1

��− ��−Di�
+�

and

MF �� �n�	D�=min
(
n�	

n∑
i=1

Di

)

= n�+min
(
0	

n∑
i=1

Di − n�

)
�

Because demands are independent and bounded, by the
Central Limit Theorem,

E

[
min

(
0	

n∑
i=1

Di − n�

)]

=√
nE

[
min

(
0	

∑n
i=1�Di −��√

n

)]
∼O�

√
n��

We are interested in comparing the performance of the
long chain, vis-á-vis the full flexibility system. In particular,
we want to evaluate

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

� (6)

Besides tracking the above ratio, we would also like to
track the improvement of the chaining structure over the
dedicated system. This refinement is useful because it rules
out those cases where the dedicated system is already as
good as the full flexibility system. In fact, for the dedicated
system, it is easy to show that

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

= �−E���−Di�
+�

�
� (7)

By our assumption, E���−Di�
+���/2, hence we already

have

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

� 1/2�
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Let

CE�n��
E�MF ���n�	D��−E�MF ���n�	D��
E�MF �� �n�	D��−E�MF ���n�	D��

= E�MF ���n�	D��− n�+ nE���−Di�
+�

nE���−Di�
+�−O�

√
n�

� (8)

CE�n� measures the extent of the improvement accrued by
the chaining structure, vis-á-vis the dedicated system, and
normalized by the maximal possible improvement which is
attained by the full flexibility system.
Let ACE denote the asymptotic value of the chaining

efficiency, where

ACE � lim
n→�CE�n��

It follows that

ACE= E��Di−��+�+limn→��1/n�E�MF ���n�	D��−�

E��Di−��+�
�

(9)

Hence, our focus from here onward is to find �1/n� ·
E�MF ���n�	D��. Note that

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

= ACE+ �1−ACE�

(
lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

)
(10)

= ACE+ �1−ACE�

(
�−E���−Di�

+�
�

)
� (11)

Because the flow on each arc is bounded by �, we can
delete a link from the chain ��n�, to obtain ��n�, without
affecting the asymptotic performance of the two structures.
In fact, we have the following lemma:

Lemma 1. lim
n→�

E�MF ���n�	D��
n

= lim
n→�

E�MF ���n�	D��
n

�

We thus focus on finding the maximum flow on the path
structure ��n�, rather than the chain ��n�.

3.1. Maximum Flow on ��n�

For ease of exposition, we let the arc linking demand node i
to supply node i denote the “primary” arc, and the arc
linking demand node i to supply node i + 1 denote the
“secondary” arc. We delete the arc from demand node n to
supply node 1 from the 2-chain to obtain the path ��n�.
The max flow on ��n� can be determined in a greedy fash-
ion: First, satisfy the demand D1 using whatever (primary)
capacity provided by the primary arc that is available, and
then use as much (secondary) capacity provided by the sec-
ondary arc as needed. Next, move to the next product, and
based on the level of (primary) capacity remaining, satisfy
the demand Di using the primary followed by secondary
capacities, with i ranging from 2 to n, in that order. The

amount of max-flow obtained in this greedy fashion is a
random variable, depending on the values of Di.
To present this greedy approach formally and to facili-

tate our analysis, we let Ti denote the amount of primary
capacity left for product i and let Si denote the amount of
secondary capacity consumed by product i, after demands
for products 1 to i − 1 have been satisfied using the
greedy method. Therefore, Ti =�−Si−1 and we set S0 = 0.
Let TF denote the total maximum flow. Similarly, let
TE=∑n

i=1Di −TF denote the difference between the total
demand and the total flow; that is, the total unmet demand.
This implies that

1
n
E�TE�=�− 1

n
E�TF�� (12)

We account for TF by keeping track of TE as we assign
capacity to demand. Consider step i of the greedy approach,
wherein Ti is known before Di is observed. The greedy
allocation implies that

Si ←min��Di − Ti�
+	��	 Ti+1 ←�− Si	

TE← TE+ ��Di − Ti�
+ −��+� (13)

We summarize the greedy approach as follows.

Algorithm 1. (Greedy Approach)
Step 1. Set i �= 1, S0 �= 0, T1 �=�, and TE �= 0.
Step 2. Observe Di.
If Di > �, then Si �= min�Si−1 + Di − �	��, Ti+1 =

�− Si, and TE �= TE+max�Di − Ti −�	0�.
If Di < �, then Si �= max�Si−1 + Di − �	0�, Ti+1 =

�− Si, and TE �= TE.
Step 3. If i= n− 1, then STOP. TE �= TE+max�Dn −

Tn	0�. Return TE as the minimum excess.
Otherwise, i �= i+ 1 and go to Step 2.
At this point, note that 
Si� i= 0	1	2	 � � �� behaves much

like a generalized random walk, with random step size Xi �
Di − � and absorbing boundaries 0 and �. The value TE
grows in Step 2 only when Di−Ti > �	; that is, when Si =
min�Di + Si−1−�	��= �. We call this quantity (Xi − Ti)
the level of overshoot at the upper boundary. Note that
�Xi − Ti�=Di − Ti −�.
In Step 2 of the greedy algorithm, when Di < �, it

is possible that Si−1 + Di − � < 0. We call this amount
(−Si−1−Xi) the level of overshoot at the lower boundary.
Note that we do not account for overshoot at the lower
boundary while keeping track of TE in the greedy algorithm.
The random walk starts initially at S0 = 0, the lower

boundary. It gets trapped at the lower boundary whenever
Xi < 0, and escapes only when Xi > 0. An interesting phe-
nomenon happens when the random walk hits the upper
boundary—the walk gets trapped at the upper boundary
whenever Xi > 0, and it escapes from the upper boundary
only when Xi < 0.
Let

% � inf
n� Sn =�	 n� 1�
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denote the stopping time when the walk first hits the upper
boundary. We can re-start the random walk from the lower
boundary at time % : interchange the roles of the upper and
lower boundaries, and let

X ′
i ←−Xi =�−Di ∀ i > %	 (14)

S ′
% ←�− S% = 0	 (15)

S ′
i =

{
min�S ′

i−1+X ′
i 	�� if X ′

i > 0

max�S ′
i−1+X ′

i 	0� if X ′
i < 0

∀ i > %� (16)

Because X ′
i is distributed in an identical fashion to Xi by

symmetry of demand distribution, the random walk S ′
i from

S ′
% = 0 onward, under the above change of coordinate, is
identical in distribution to the earlier random walk Si start-
ing at S0 = 0.
Note that the way we account for TE changes under this

new model. In the earlier walk, TE changes value only at
the upper boundary, whereas in the new random walk, TE
changes only when there is overshoot at the lower boundary.
We repeat this process whenever the new random walk hits
the upper boundary, switching back to the original random
walk model. Let Ŝi denote the stochastic process obtained
by toggling between Si and S

′
i in the above manner.

Example 1. Figure 2 shows an example of a path that
the random walk 
Si	 i= 0	1	2	 � � �� might traverse. Here,
products 1, 3, 4, 9, and 10 have demands lower than �,
while the rest have demands higher than �. We also see the
walk get absorbed in the lower boundary three times and in
the upper boundary once. When the walk was absorbed in
the upper boundary, some unmet demands for products 6, 7,
and 8 were lost. We are interested in the expected amount
of such excess quantities.

Suppose we consider another generalized random walk

Ŝi	 i = 0	1	2	 � � �� such that Ŝ0 = S0, but Ŝi toggles bet-
ween S ′

i =�−Si and Si each time Ŝi hits the upper bound-
ary. That is, the first time Ŝi hits the upper boundary, change
to Ŝi = S ′

i ; the next time, switch back to Ŝi = Si, and so on.
Figure 3 shows the equivalent sample path for the new ran-
dom walk that corresponds to the sample path for the old
random walk in Figure 2.
Note that unmet demand is incurred at the upper bound-

ary when Ŝi = Si, but at the lower boundary when Ŝi = S ′
i .

Figure 2. Sample path for 
Si	 i= 0	1	2	 � � ��.

…

0
1 1098765432 1211

µ

Figure 3. Sample path for 
Ŝi	 i= 0	1	2	 � � ��.

…

0
1 1098765432 1211

µ

For example, in Figure 3, we easily verify that indeed,
unmet demands are incurred for products 6, 7, and 8.
Although it is possible to work on 
Si	 i = 0	1	2	 � � ��,

the transformation to 
Ŝi	 i= 0	1	2	 � � �� provides a more
convenient formulation. In particular, 
Ŝi	 i = 0	1	2	 � � ��
turns out to be a regenerative process whenever the random
walk hits the upper boundary—the process regenerates, and
its continuation is a probabilistic replica of the original pro-
cess starting at Step 1 again.
Because all regenerating cycles are probabilistically

identical, it suffices to examine the characteristics of one
cycle for the purpose of asymptotic analysis. Some of these
relevant characteristics are:
• Cycle duration % : the length of each regenerative

cycle. Recall that

% � inf
n� Sn =�	 n� 1	 S0 = 0��

• Cycle overshoot &: the amount of overshoots at both
the lower and upper boundaries in each cycle;

& �
%∑

i=1

(
�Si − Si−1−Xi�'�Xi < 0�

+ �Si−1+Xi − Si�'�Xi > 0�
)
	

where '�·� denote the indicator function.
Note that & can be decomposed into two components,

with & = &L +&U , where

&L �
%∑

i=1

(
�Si − Si−1−Xi�'�Xi < 0�

)

and

&U �
%∑

i=1

(
�Si−1+Xi − Si�'�Xi > 0�

)
�

Consider a renewal process 
N �t�� t � 0�, having i.i.d.
interarrival time Yi with Yi ∼ % for all i. The reward Ri

obtained at the ith renewal is &L if i is even, and is &U if
i is odd. Note that from (12),

n∑
i=1

Di −
N�n�+1∑
i=1

Ri �MF ��n	D��
n∑

i=1
Di −

N�n�∑
i=1

Ri� (17)
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Because Ŝi toggles alternately between Si and S ′
i and by

the renewal reward theorem,

lim
n→�

E�
∑N�n�

i=1 Ri�

n
= E�&L�+E�&U �

2
1
E�%�

�

Hence, taking the limit in (17), we obtain:

Theorem 1. lim
n←�

E�MF ���n�	D��
n

=�− E�&�/2
E�%�

�

For any discrete demand distribution symmetrical around
the mean ., the parameters E�&� and E�%� can be obtained
by solving a system of linear equations. We represent the
distribution as follows:

support
Di�= 
0	1	 � � � 	.	 � � � 	2.− 1	2.��
Let

Px = Prob�Di =.+ x� ∀x=−.	−.+ 1	 � � � 	.− 1	.	
and w.l.o.g.,4

Px = P−x > 0	 P0 = 0�
Define the stopping time if the random walk started at x,

%x � inf
n� Sn =�	 n� 1	 S0 = x��

Clearly, % = %0 and %. = 0. Conditioning on the next move,

E�%x�= 1+
.−1∑
j=1
E�%j �Pj−x +E�%0�

.∑
j=x

Pj

∀x= 0	1	 � � � 	.− 1� (18)

We can obtain E�%� = E�%0� by solving the system of
Equation (18).
Similarly, given S0 = x, we define the overshoot as

&x �
%x∑
i=1

(
�Si − Si−1−Xi�'�Xi < 0�

+ �Si−1+Xi − Si�'�Xi > 0�
)
�

Obviously, & = &0 and &. = 0. Conditioning on the next
move,

E�&x�= rx +
.−1∑
j=1
E�&j�Pj−x +E�&0�

.∑
j=x

Pj

∀x= 0	1	 � � � 	.− 1	 (19)

where

rx =
.+x∑
j=.

�j −.�Pj−x +
.∑

j=x

�j − x�Pj ∀x= 0	1	 � � � 	.− 1�

We can obtain E�&� = E�&0� by solving the system of
Equation (19).

By Theorem 1 and the definition of ACE, we have:

Theorem 2. The asymptotic chaining efficiency can be
uniquely obtained as follows�

ACE = 1− E�&0�
2E�%0�E��Di −.�+�

	

where E�&0� and E�%0� come from the solutions to linear
systems (18) and (19), respectively.

Proof. We show first the uniqueness of the solutions to
(18) and (19). Observe that (18) and (19) have the same
homogeneous system. Because

∑.−1
j=1 Pj−x +

∑.
j=x Pj < 1,

the associated matrix is strictly diagonally dominated,
hence nonsingular.
Now, from (9), Lemma 1, and Theorem 1,

ACE = E��Di −.�+�+ limn→��1/n�E�MF ���n�	D��−.

E��Di −.�+�

= 1− E�&0�
2E�%0�E��Di −.�+�

� �

Furthermore, ACE is invariant over the scale of the
demand.

Corollary 1. Suppose that D′
i ∼ cDi, c > 0. Then,

ACE ′ = ACE.

Proof. It is easy to see that E�% ′
0�= E�%0�, E�&′

0�= cE�&0�,
and E��D′

i−c.�+�= cE��Di−.�+�, from which the result
follows. �

This gives rise to an efficient method to determine the
asymptotic efficiency of the 2-chain. When demand follows
a discrete distribution, Theorem 1 and Corollary 1 can be
directly applied. On the other hand, when demand follows
a continuous distribution from 0 to 2�, the above results
can still be used to approximate the asymptotic chaining
performance. This is done by discretizing the distribution
into 2.+ 1 equally spaced demand points from 0 to 2�.
Obviously, the more discrete points used, the better the
approximation.

3.2. Applications

3.2.1. Two-Point Distribution. When demand Di = 0
or 2� with equal probability, then it is easy to see that

E�&�=�	 E�%�= 2�
Hence, ACE = 0�5. Furthermore, because E���−Di�

+�=
�/2,

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

= 0�5+ 0�5× 0�5= 0�75�

Thus, the chaining strategy achieves only 75% of the effi-
ciency of the full flexibility system. This poor performance
stems in part from the large variability in the demand
distribution.
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3.2.2. Uniform Distribution. Suppose that demand
Di = 0	1	 � � � 	. − 1	. + 1	 � � � 	2. − 1	2. with equal
probability; that is,

Px =
1
2.

∀x= 1	 � � � 	.− 1	.�
It can be shown that

E�%0�=
4.�2.+ 1�

�.+ 2��.+ 1� 	 E�&0�=
.�5.+ 4�
3�.+ 2� 	

E�Di −.�+ = .+ 1
4

�

Hence,

ACE = 7.+ 2
12.+ 6 �

Furthermore, because E��.−Di�
+�= �.+ 1�/4,

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

= 7.+ 2
12.+ 6 +

(
0�75− 1

4.

)

× 5.+ 4
12.+ 6 = 43.2+ 15.− 4

48.2+ 24. �

When demand Di is uniformly distributed over �0	2��,
we can obtain the ACE by first discretizing the interval into
2. + 1 demand points, then taking the limit as . → �.
Hence,

ACE = lim
.→�

7.+ 2
12.+ 6 = 7

12
≈ 58�33%

and

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

= lim
.→�

43.2+ 15.− 4
48.2+ 24.

= 43
48

≈ 89�58%�

Note that in this case, the value of the expected max-flow
in the 2-chain is already around 89.6% of the expected
max-flow in the full flexibility system!

3.2.3. Normal Distribution. Suppose that demand
Di ∼ N��	1�. Then, we can likewise approximate the
value of ACE by discretization. Moreover, Corollary 1
implies that for a fixed coefficient of variation, the ACE is
independent of the actual magnitudes of � and 1 . Table 1
summarizes how the ACE values change with respect to the
discretization level and the coefficient of variation.
Obviously, as we increase the number of demand points,

the approximation becomes finer. More importantly, the

Table 1. ACE for various . and CV values.

Coefficient of variation (CV)

. 0.33 0.31 0.29 0.27 0.25 0.23 0.21

2 0�6452 0�6509 0�6559 0�6599 0�6629 0�6649 0�6660
4 0�6895 0�7007 0�7124 0�7244 0�7365 0�7486 0�7604
6 0�6970 0�7090 0�7216 0�7348 0�7484 0�7623 0�7765
8 0�6997 0�7119 0�7248 0�7383 0�7524 0�7669 0�7819
10 0�7010 0�7133 0�7263 0�7399 0�7542 0�7690 0�7843
12 0�7017 0�7140 0�7271 0�7408 0�7552 0�7701 0�7856
14 0�7022 0�7145 0�7275 0�7413 0�7558 0�7708 0�7864

Table 2. E�MF ���n�	D��/E�MF �� �n�	D�� for
various CV values.

Coefficient of variation (CV)

0.33 0.31 0.29 0.27 0.25 0.23 0.21

lim
n→�

E�MF ���n�	D��
E�MF �� �n�	D��

0�9614 0�9650 0�9687 0�9723 0�9758 0�9791 0�9823

value of ACE decreases in the coefficient of variation. This
is because as relative uncertainty decreases, the need for
any form of flexibility is reduced, thus improving the value
of the 2-chain relative to full flexibility.
We tabulate next the ratio of the expected sales from the

chaining structure and the full flexibility system in Table 2.
Interestingly, even with a coefficient of variation (CV) of
0.33, the expected sales under the chaining structure are
already close to 96% of the full flexibility system.

3.3. Extensions

The proposed method works as long as all products have
the same demand distribution and all plants have the same
capacity, even if the system is unbalanced (i.e., capacity not
equal to mean demand) and the demand distribution is not
symmetrical.

3.3.1. Nonsymmetrical Demand. In this case, the odd
and the even cycles will have different stopping times
and overshoots. To demonstrate, we consider the following
example:

Di =




0	 w.p. 0�3

2	 w.p. 0�1

4	 w.p. 0�4

8	 w.p. 0�2

and Ci = 5�

Note that Di is not symmetrical about the mean. Let %i
and �%i be the stopping times for the odd and even cycles,
respectively, and let &i and �&i denote the respective over-
shoots. Then,


0�2 0 0 −0�2 0

−0�8 1 0 0 −0�2
−0�4 −0�4 1 0 0

−0�4 0 −0�4 1 0

−0�3 −0�1 0 −0�4 1







E�%0� E�&0�

E�%1� E�&1�

E�%2� E�&2�

E�%3� E�&3�

E�%4� E�&4�




=




1 0

1 0

1 0

1 0�2

1 0�4






Chou et al.: Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure
Operations Research 58(1), pp. 43–58, © 2010 INFORMS 51

and




0�8 −0�4 0 −0�1 0

−0�2 1 −0�4 0 −0�1
−0�2 0 1 −0�4 0

−0�2 0 0 1 −0�4
0 −0�2 0 0 1







E��%0� E��&0�
E��%1� E��&1�
E��%2� E��&2�
E��%3� E��&3�
E��%4� E��&4�




=




1 0�6

1 0�4

1 0�2

1 0

1 0



�

Hence,

ACE = 1− E�&0�+E��&0�
�E�%0�+E��%0��E�Di −Ci�

+

= 1− 0�7436+ 1�2377
�22�7920+ 2�8798�0�6 = 0�8714�

In general, the above approach can be extended to obtain
the asymptotic performance of the 2-chain in a balanced
demand-and-supply system, as long as the demand is iden-
tical for all locations.

3.3.2. Unbalanced System. We consider next the situ-
ation when the total supply capacity might not be the same
as the total demand. Consider the case when the demands
are normally distributed with mean � and standard devi-
ation 1 (with a CV of at most 0.33), but the capacity of
each plant is 2.
When 2=�, we note that the absence of a safety capac-

ity entails a fill rate of only 100�1 − 0�399× CV)% =
86�7% for each product, when CV= 0�33. To guarantee a
97.26% fill rate for each product, a dedicated system ought
to carry a safety capacity of 1 units for each product, lead-
ing to a total safety capacity of n1 units. Because full flex-
ibility corresponds to complete capacity pooling, we can
achieve a 97.26% fill rate for the entire system with only
1
√
n units of safety capacity. This dramatic reduction in

safety stock investment performance comes about with full
flexibility in the production system. We investigate the cor-
responding performance in the case of the chaining struc-
ture. Tables 3 and 4 demonstrate that both ACE and the
expected sales ratio of chaining to full flexibility increase
in the ratio of 2/�.
This suggests that the balanced scenario (2 = �) pro-

vides a lower bound for the situation when 2 > �
(i.e., safety capacity scenario). Therefore, with 2 = � +
1/

√
n (i.e., 1

√
n units of total safety capacity in the

system), a chaining structure can already guarantee a fill
rate of at least 97�26%× 96�14% = 93�5%. Note that the

Table 3. ACE for various 2 and CV values.

Coefficient of variation (CV)

2/� 0.33 0.31 0.29 0.27 0.25 0.23 0.21

0.85 0�2986 0�2810 0�2616 0�2400 0�2162 0�1904 0�1628
0.90 0�4156 0�4035 0�3892 0�3720 0�3513 0�3265 0�2972
0.95 0�5561 0�5552 0�5531 0�5492 0�5428 0�5328 0�5180
1.00 0�7037 0�7159 0�7290 0�7428 0�7574 0�7726 0�7885
1.05 0�8314 0�8510 0�8715 0�8924 0�9136 0�9345 0�9541
1.10 0�9189 0�9365 0�9529 0�9673 0�9794 0�9886 0�9947
1.15 0�9659 0�9771 0�9859 0�9923 0�9964 0�9986 0�9996

average safety capacity per plant is decreasing in n. For the
dedicated system to maintain this level of fill rate, the corre-
sponding safety capacity investment is at least 0�5n1 . This
analysis suggests another advantage of flexibility in pro-
duction planning: Apart from increasing the expected sales,
the flexibility strategy can also help to decrease the safety
capacity investment needed to maintain a required fill-rate
level. In the identical demand case, we expect that the
safety capacity investment that is needed should decrease
roughly by a factor of O�

√
n�.

4. General Demand and Supply
Consider a manufacturer with n plants that can be used to
produce m different products. The capacities of the plants
are fixed, and the demands of the products are random.
In this section, we assume that demand can be arbitrarily
correlated and nonidentical.
Let D = �D1	D2	 � � � 	Dm� denote the demands of prod-

ucts and C = �C1	C2	 � � � 	Cn� denote the capacities of
plants. Di is a random variable with mean �i. We also
assume that each unit of the capacity in plant j can be used
to produce one unit of product i, if �i	 j� ∈�. LetMF ��	D�
denote the total demand satisfied with structure �, when
demand is D. The manufacturer wants to design a flexibil-
ity structure � to effectively deal with demand uncertainty.
Note that a 2-chain might not perform well in this situation.
Obviously, the performance of the full flexibility struc-

ture (the complete bipartite graph � ) is the best among
all flexibility structures. However, the investment and co-
ordination cost of such a system is also the largest. We

Table 4. E�MF ���n�	D��/E�MF �� �n�	D�� for
various 2 and CV values.

Coefficient of variation (CV)

2/� 0.33 0.31 0.29 0.27 0.25 0.23 0.21

0.85 0�8467 0�8475 0�8482 0�8489 0�8494 0�8497 0�8499
0.90 0�8912 0�8930 0�8948 0�8964 0�8978 0�8988 0�8994
0.95 0�9304 0�9335 0�9365 0�9394 0�9421 0�9444 0�9464
1.00 0�9614 0�9650 0�9687 0�9723 0�9758 0�9791 0�9823
1.05 0�9820 0�9852 0�9882 0�9909 0�9934 0�9955 0�9972
1.10 0�9930 0�9950 0�9966 0�9979 0�9988 0�9994 0�9998
1.15 0�9977 0�9986 0�9992 0�9996 0�9998 1�0000 1�0000
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are thus interested in identifying a “sparse” structure �,
where the ability to match capacity to demand is as close
to the full flexibility system as possible. Our problem boils
down to finding a structure � with E�MF ��	D�� as close
to E�MF �� 	D�� as possible.
Our problem can be cast in a more general framework.

Note that the maximum-flow problem MF �� 	D�, obtained
by solving Z∗

� �D�, is a special case of the following more
general problem:

�P�� Z�b	 
1	 � � � 	 n��

=max
{ n∑
i=1

cixi� Ax� b� xi � 0	 i= 1	 � � � 	 n
}
	

where ci � 0 �∀ i = 1	 � � � 	 n�, A is an m× n nonnegative
matrix, b is random and nonnegative, and n�m. Let

Z�b	S�=max
{∑

i∈S
cixi� ASxS � b� xi � 0	 i ∈ S

}
	

where AS (respectively, xS) denote the columns (respec-
tively, rows) of A (respectively, x) indexed by the subset S.
Our goal is to identify a subset S so that

Eb�Z�b	S��� �1− ��Eb�Z�b	 
1	 � � � 	 n���

and

�S� ≈O�m�� n�

The set S is the support for the feasible solution in (P) and
corresponds to the process structure in the process flexibil-
ity problem. In this way, the design of the process structure
corresponds to the selection of the variables to be retained
in the support set S. We interpret this problem using the
dual of (P), where the variables in (P) correspond to the
constraints in the dual LP. Our problem now reduces to
a constraint selection problem. We address this problem
using the recent approach of constraint sampling, inde-
pendently developed by Calafiore and Campi (2005) and
de Farias and Van Roy (2004). We note that the approach
by de Farias and Van Roy (2004), although couched in a
different context, uses a sampling distribution based on an
optimal policy to the original problem and is very similar
to the key idea used here. However, we take a small step
further and identify a condition on the optimal solution to
ensure that the error (loss of optimality) introduced in the
constraint sampling approach will be small.

4.1. Constraint Sampling

The problem addressed by Calafiore and Campi (2005) can
be formulated as follows:

�UCP��
{
min cT x� f �x	��� 0� � ∈�� x ∈� ⊆�n

}
	

where x is the decision variable, � is a convex and closed
region, � is the random parameter in set � (�⊂ �l), and
f �x	�� is continuous and convex in x for all �.
The uncertain linear program �UCP� could involve an

infinite number of constraints because the set � may
already be uncountable. Instead, Calafiore and Campi
(2005) studied the randomized version of UCP, where the
constraint set � is endowed with a probability distribu-
tion. They proposed a “randomized constraint sampling”
approach to construct a “�-robust” feasible solution (i.e.,
the probability that the solution obtained will violate a ran-
dom constraint in � is less than �). They generated N con-
straints by sampling the parameter � from � using the
endowed probability distribution, and solved the following
problem:

UCPN �
{
mincT x� f �x	�k��0	 k=1	���	N � x∈�⊆�n

}
	

where �ks are the parameters sampled.
They showed that the solution of the new problem will

violate only a tiny portion of the original constraints if N is
large enough. Specifically, if N � n/��5�−1, the probabil-
ity that the optimal solution of UCPN (say x̂N ) is �-robust
feasible is more than 1−5. Here, n is the dimension of x
and �	5 ∈ �0	1�.
It is obvious that Calafiore and Campi’s (2005) result is

also valid for uncertain linear programming (ULP) prob-
lems (cf. de Farias and Van Roy 2004), where the con-
straints f �x	�� � 0 are linear. We will briefly describe
the intuition of the proof in this case, as it applies to our
problem. Note that in our approach, the nonnegative con-
straints x� 0 are always included in the subproblem UCPN ,
and we only sample from the other constraints in ..
Let z�1�	 � � � 	 z�N+1� represent N + 1 parameters sampled

from � with the same endowed distribution. Construct the
following problem for each k= 1	2	 � � � 	N + 1:

ULPkN � 
min c
T x� x� 0� f �x	 z�i��� 0	

i= 1	 � � � 	 k− 1	 k+ 1	 � � � 	N + 1��

Let x̂kN denote an optimal solution of ULP
k
N . In the case

of multiple optimal solutions, we choose one that is lexico-
graphically maximal. In addition, define a problem ULPN+1
consisting of all N + 1 constraints:

ULPN+1� 
minc
T x� x�0� f �x	z�i���0	 i=1	���	N+1	�	

and let x̂N+1 denote an optimal solution of ULPN+1.
Note that ULPN+1 and ULP

k
N differ in just one con-

straint—f �x	 z�k��� 0. In the event that this constraint is not
tight at the optimal solution for ULPN+1, its deletion from
the set of constraints will not affect the optimality of x̂N+1.
Hence, we must have x̂N+1 = x̂kN ; that is, f �x̂

k
N 	 z

�k��� 0.
If N is sufficiently large, and if there are relatively fewer
tight constraints, the event f �x̂kN 	 z

�k��� 0 holds with very
high probability.
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Proposition 1 (Calafiore and Campi 2005). The prob-
ability that x̂kN will violate the kth (sampled) constraint
f �x	 z�k�� � 0 is bounded above by n/�N + 1�; that is,
P�f �x̂kN 	 z

�k�� > 0��
n

N + 1 	
where n is the dimension of the decision variable x.

Note that for each k, the random variable x̂kN is stochas-
tically equivalent to x̂N , the solution obtained by solving
ULPN , where N constraints are independently and identi-
cally sampled from �. More precisely, if the jth constraint
in � is sampled with probability qj , the proposition ensures
that

P�f �x̂kN 	z
�k��>0�=∑

j∈.
qjP�f �x̂

k
N 	z

�k��>0 �z�k�=zj�

=∑
j∈.

qjP�f �x̂N 	z
j�>0��

n

N+1 � (20)

Note that the above results hold as long as the z�k�s are
sampled in an identical manner, using the endowed proba-
bility distribution on �.

4.2. Identifying a Sparse Support Set

Consider the problem (P):

Z�b	
1	���	n��=max
{ n∑
i=1

cixi� Ax�b� xi�0	 i=1	���	n
}
�

For ease of exposition, we use Z�b� to denote
Z�b	 
1	 � � � 	 n��. The dual problem (D) is given by

�D�� Z�b�=min
{ m∑
j=1

bjyj �A
T y�c� yj �0	 j=1	���	m

}
�

(D) is a linear programming problem with m variables and
n constraints. If we sample N constraints from (D), and
denote the constraints sampled by S, we obtain the problem

�D�S��� Z�b	S�=min
{ m∑
j=1

bjyj � A
T
S y � cS�

yj � 0	 j = 1	 � � � 	m
}
�

The dual of this problem is

�P�S��� Z�b	S�=max
{∑

i∈S
cixi� ASxS�b� xi�0	 i∈S

}
�

Note that unlike the uncertain convex programming
problem, we do not have an endowed distribution for the
set of constraints. The selection of the sampling distribu-
tion plays a key role in our analysis. We discuss next how
the sampling distribution can be obtained.
Let x∗�b� denote an optimal solution in Z�b�. Note that

because b is random, x∗�b� is also a random vector. We
assume that problem (P) has an optimal solution x∗�b� with
the following property:

Property A. x∗
i �b� � 2Eb�x

∗
i �b�� almost surely for some

constant 2> 0 (independent of n), and for all i= 1	 � � � 	 n.

Property A essentially states that the optimal primal solu-
tion x∗�b�, for each realization of b, should not be too far
above its mean value. This property holds, for example, for
a truncated normal distribution and many bounded demand
distributions.

Theorem 3. Suppose that Property A holds for (P). Then,
there exists a set S with cardinality N = O�2m/��, such
that

Eb�Z�b	S��� �1− ��Eb�Z�b���

We prove Theorem 3 using constraint sampling on the
dual problem (D). The ith constraint in problem (D) is sam-
pled with probability

ciEb�x
∗
i �b��∑n

j=1 cjEb�x
∗
j �b��

�

We repeat the sampling procedure N times and denote the
set of (distinct) constraints obtained by S.

Proof. For fixed b, let x∗�b� and y∗�b� denote the corre-
sponding optimal primal and dual solution in (P) and (D),
respectively. Similarly, let x∗�b	 S� and y∗�b	 S� denote the
corresponding optimal primal and dual solutions in �P�S��
and �D�S��, respectively:

Z�b	S�=
m∑
j=1

bjy
∗
j �b	 S�

=
m∑
j=1

bjy
∗
j �b	 S�+Z�b�−

n∑
i=1

cix
∗
i �b�

� Z�b�+
m∑
j=1

y∗j �b	 S�
( n∑

i=1
Ajix

∗
i �b�

)
−

n∑
i=1

cix
∗
i �b�

=Z�b�+
n∑

i=1
x∗
i �b�

( m∑
j=1

Ajiy
∗
j �b	 S�

)
−

n∑
i=1

cix
∗
i �b�

=Z�b�+
n∑

i=1

( m∑
j=1

Ajiy
∗
j �b	 S�− ci

)
x∗
i �b��

Note that( m∑
j=1

Ajiy
∗
j �b	 S�− ci

)
x∗
i �b��−cix

∗
i �b�

holds for all y∗�b	 S�, but when the constraint
∑m

j=1Ajiyj
� ci holds for y

∗�b	 S�, then

( m∑
j=1

Ajiy
∗
j �b	 S�− ci

)
x∗
i �b�� 0�

Define

ES�9�S��=
∫
S
9�S�dF �S�	



Chou et al.: Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure
54 Operations Research 58(1), pp. 43–58, © 2010 INFORMS

where 9�S� is a function on space S, and F �S� is a cumu-
lative distribution function on S. Hence, we can obtain

ES�Z�b	S��

�Z�b�+ES

[ n∑
i=1

( m∑
j=1

Ajiy
∗
j �b	 S�− ci

)
x∗
i �b�

]

�Z�b�−
[ n∑
i=1

cix
∗
i �b�P

( m∑
j=1

Ajiy
∗
j �b	 S� < ci

)]

�Z�b�−
[ n∑
i=1

ci2Eb�x
∗
i �b��P

( m∑
j=1

Ajiy
∗
j �b	 S� < ci

)]

(by Property A)

=Z�b�−2

( n∑
i=1

ciEb�x
∗
i �b��

)

·
[ n∑
i=1

ciEb�x
∗
i �b��∑n

k=1 ckEb�x
∗
k�b��

P

( m∑
j=1

Ajiy
∗
j �b	 S� < ci

)]

�Z�b�− 2m

N + 1
( n∑

i=1
ciEb�x

∗
i �b��

)
(from (20))�

Because
∑n

i=1 ciEb�x
∗
i �b��= Eb�Z�b��, by taking expecta-

tion over b,

Eb	S�Z�b	S��� �1− ��Eb�Z�b���

Hence, there exists a sparse support set S with cardinality
N =O�2m/�� (independent of n) such that Eb�Z�b	S���
�1− ��Eb�Z�b��� �

Note that although we did not specify the set S in the
proof, a good support set can be obtained by repeating the
sampling experiment. By the law of the large numbers, if
we perform a sufficient number of experiments, then it is
likely that the best structure obtained from the experiments
will be as good as the (population) mean ES�Z�b	S��.
In the rest of the section, we use the above results to

identify the condition on the random parameters b, so that
the existence of a near-optimal sparse support set can be
guaranteed for these problems.

4.3. Sparse Process Flexibility Structure

To apply Theorem 3, we need to understand the behavior
of the (random) optimal solution x∗�b� as b varies. Fortu-
nately, for the process flexibility problem, this problem is
trivial under the full flexibility structure � . Note that in this
problem, with demand D = �D1	D2	 � � � 	Dm� and capac-
ity C= �C1	 � � � 	Cn�, the max-flow problem has up to nm
variables, with only O�n+m� constraints.

Lemma 2.

x∗
ij �D�=

DiCj

max

∑m

i=1Di	
∑n

j=1Cj�
	

i= 1	 � � � 	m	 j = 1	 � � � 	 n	

is an optimal solution to Z∗
� �D� under the full flexibility

structure � . Furthermore,

MF �� 	D�=min
{ m∑
i=1

Di	
n∑

j=1
Cj

}
�

Proof. For the full flexibility structure � , it is easy to see
that

MF �� 	D�=min
{ m∑
i=1

Di	
n∑

j=1
Cj

}
�

Note also that

x∗
ij �D�=

DiCj

max

∑m

i=1Di	
∑n

j=1Cj�

=
(

Di∑m
i=1Di

)(
Cj∑n
j=1Cj

)
min

{ m∑
i=1

Di	
n∑

j=1
Cj

}

=
(

Di∑m
i=1Di

)(
Cj∑n
j=1Cj

)
MF �� 	D�	

so that
m∑
i=1

m∑
j=1

x∗
ij �D�=

m∑
i=1

(
Di∑m
i=1Di

) n∑
j=1

(
Cj∑n
j=1Cj

)
MF �� 	D�

=MF �� 	D��

It is also easy to see that x∗(D) is a feasible solution to the
max-flow problem. �

This result has numerous implications for the process
flexibility problem. For example, suppose that the demand
Di is bounded between the lower bound LE�Di� �>0�
and the upper bound UE�Di� (with U � L > 0) for all
i = 1	 � � � 	 n.5 We assume that the capacity is configured
properly so that

∑
j Cj �U�

∑n
i=1E�Di��. For the max-flow

problem under the full flexibility structure,

x∗
ij �D�=

DiCj

max

∑m

i=1Di	
∑n

j=1Cj�
�

UE�Di�Cj

L�
∑n

i=1E�Di��

and

ED�x
∗
ij �D��=ED

[
DiCj

max

∑m

i=1Di	
∑n

j=1Cj�

]

�
LE�Di�Cj

U�
∑n

i=1E�Di��
�

In this case, we have a conservative estimate that

x∗
ij �D��

(
U

L

)2
ED�x

∗
ij �D���

Using 2 = U 2/L2 in Theorem 3, we obtain the following
corollary:

Corollary 2. If demand Di is bounded between LE�Di�
and UE�Di� for all i, then there exists a process structure �
with cardinality ��� =O��n+m�U 2/��L2��, such that

E�MF ��	D��� �1− ��E�MF �� 	D���

Note that the process structure � uses onlyO�U 2�n+m�/
L2�� links, whereas the full flexibility structure � has nm
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links. Thus, the number of links in � is much smaller than
the full flexibility system when U 2/�L2���min�m	n�. In
the event that m and n are both moderate and � is small or
U/L is large, then the above result is not useful. Note that
the bound U 2/�L2�� is needed to facilitate the proof to our
main result, and is not indicative of the actual number of
links needed to attain the desired performance. Our numer-
ical experiments (see the next section) seem to indicate that
the performance of the sparse structure is not sensitive to
the choice of the parameters U and L.

5. Numerical Results: Capacity
Pooling Problem

In this section, we use the sampling-based approach to
study a partial capacity pooling problem. Consider a manu-
facturer using n plants with capacity Ci (i= 1 � � � n) to meet
the (random) demand Di from n different regions. Origi-
nally, each plant is supposed to serve the demand from a
single (dedicated) region. To increase the manufacturer’s
service level, a capacity pooling method can be adopted by
“pooling” the capacity of all the plants; that is, each plant
can use its unused capacity to meet the demand from other
regions if there is a need to. This problem can be reduced
to a variant of the process flexibility problem, where there
are n plants and n products. Each plant i has capacity
�Ci−Di�

+ (the spare capacity at plant i), which can be used
to meet the demand for other products. Each product has
demand �Di−Ci�

+ (unfilled demand at region i). Note that
in this case, both capacity and demand are random param-
eters in our problem, and �Ci −Di�

+ × �Di −Ci�
+ = 0.

From Theorem 3 and the analysis in the previous sec-
tions, the existence of a sparse support structure for the
capacity pooling problem is guaranteed by the following
condition:

x∗
ij �D�=

�Di −Ci�
+�Cj −Dj�

+

max

∑n

i=1�Di −Ci�
+	

∑n
j=1�Cj −Dj�

+�

� 2ED

[
�Di −Ci�

+�Cj −Dj�
+

max

∑n

i=1�Di −Ci�
+	

∑n
j=1�Cj −Dj�

+�

]

almost surely for some 2> 1, and for all i	 j .

5.1. Numerical Study

We use the data provided by Jordan and Graves (1995) to
build our example of the capacity pooling problem. Con-
sider a manufacturer with 16 plants serving 16 dedicated
regions. Demand from each region is uncertain and nor-
mally distributed with standard deviation 1i = 0�4E�Di�.
Each plant’s capacity is equal to the expected demand of
the region it serves, as shown in Figure 4. The regions can
be divided into three subgroups: Regions 1 to 6, 7 to 13,
and 14 to 16. The demands of regions in the same subgroup
are pairwise correlated with a correlation coefficient of 0.3.
There are no correlations between the demands of regions
in different subgroups.

Figure 4. Sampled capacity pooling network with
32 arcs.
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We focus on how the capacity pooling structure can be
suitably designed. Here, we consider only the unidirectional
pooling structure (cf. Figure 4, where plants are connected
via directed arcs). An arc from plant i to j means that
plant i can use its spare capacity to help plant j (serve re-
gion j). However, plant j cannot help plant i unless there is
another arc �j	 i� connecting them.
It is obvious that the complete pooling structure (where

a plant can share its capacity with any other plant) will
achieve the maximum savings. However, it would increase
the complexity of the operations, as more linkages between
the plants have to be pre-arranged. Therefore, a sparse
partial-pooling structure is preferred.
The proof of Theorem 3 indicates that, in our sampling

approach, we should set the probability of selecting arc
�i	 j� to be

pij =
ED�x

∗
ij �D��∑

k	 l ED�x
∗
kl�D��

�

Note that

ED�x
∗
ij �D��=ED

[
�Ci −Di�

+�Dj −Cj�
+

max

∑m

i=1�Ci −Di�	
∑n

j=1�Dj −Cj��

]
�

In this example, m = n = 16. While these values can be
computed in closed form for several demand distributions,
we use instead the following simulation-based approach to
approximate these values.
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Step 1: Monte Carlo Simulation
1. For each region, generate 100 realizations of demand

based on the specified demand distribution. Let Dk denote
the demand generated in the kth instance.
2. Estimate ED�x

∗
ij �D��, using

ẼD�x
∗
ij �D��

=
100∑
k=1

[
�Ci −Dk

i �
+�Dk

j −Cj�
+

max

∑16

i=1�Ci −Dk
i �	

∑16
j=1�D

k
j −Cj��

]
/100�

3. Estimate pij , using

p̃ij =
ẼD�x

∗
ij �Q��∑m

k=1
∑n

l=1 ẼD�x
∗
kl�D��

�

We next sample the arcs using the estimated probabili-
ties {p̃ij}. However, to ensure that no node will be discon-
nected from the rest of the network, we first generate an arc
into each node. Furthermore, to avoid sampling an arc twice,
we remove the arc from the sampling experiment once it has
been selected. We do this by normalizing the correspond-
ing sampling probability to zero. The procedure is described
next.

Step 2: Sampling Arcs
1. For k= 1	 � � � 	 n, generate a uniform random number

Uk ∈ �0	
∑n

j=1 p̃kj �. If

l−1∑
j=0

p̃kj < Uk �
l∑

j=0
p̃kj for some l= 1	 � � � 	 n	

let p̃kl = 0 and add arc (k	 l) to the network.
2. Arrange the arcs in lexicographical order, and let

p̂n�i−1�+j = p̃ij �
3. Generate a random number Uk ∈ �0	

∑mn
i=1 p̂i�. If

l−1∑
i=1

p̂i < U �
l∑

i=1
p̂i	 l= 1	2	 � � � 	mn	

let p̂l = 0 and add arc l to the network.
4. Repeat Step 3 until the number of arcs sampled

reaches N .
We can generate several structures with N links by

repeating Step 2. Here, 100 pooling structures are sampled.

Step 3: Structure Evaluation. The sampled structures
are graded according to their ability to match supply with
demand. We use a simulation here to determine the per-
formance of each sampled structure. We generate another
100 demand scenarios, and evaluate each structure based
on this set of demand. We choose the structure with the
best performance.
For any given N , we can use the above sampling heuris-

tic to design a good capacity pooling network. Figure 4,
for example, is a network we obtained from this sampling-
based approach, using only 32 links. The network obtained

Figure 5. Expected shared capacity as flexibility
increases.
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exhibits characteristics of a good capacity pooling network
structure: (i) the plants with a higher average capacity
should ideally be linked to more other nodes, and (ii) plants
within the same group are positively correlated, and hence
ideally there should only be a small number of pooling
arcs within them; whereas plants in different groups tend to
have more arcs linked among them because their demands
are independent.
Figure 5 plots the performance of the structures obtained

(in terms of average transshipped quantity) as the num-
ber of arcs increases. For each N , we plot the perfor-
mance attained by the best structure, the worst structure,
and the average performance of all 100 sampled structures.
As shown in Figure 5, the performance gap among these
three cases is very small and quickly converges to zero as
the number of links N increases. This suggests that the
sampling heuristic is quite stable and robust, and the per-
formance of any sampled structure is acceptable as long as
N is sufficiently large.
Another observation from Figure 5 is that, as the number

of links increases, the marginal contribution of additional
links diminishes for all three cases—the best, the worst,
and the average case. For the best case with 16 links, for
example, the expected shared capacity is only 46.7% of
the complete pooling structure. After increasing the num-
ber of arcs to 96, however, the shared capacity is already
close to 98.5% of the complete pooling structure. Note
that the complete pooling structure has up to 240 arcs.
Because the capacity pooling structure obtained using the
sampling approach gives a lower bound to the performance
of the optimal structure, it is expected that the optimal
performance-flexibility curve should be even steeper. Nev-
ertheless, our results further validate the fact that a partial-
capacity pooling structure can achieve a performance close
to that of the complete pooling system.
We also evaluate the effect of demand truncation on the

performance of the sparse process structures. More specif-
ically, instead of considering the demand in �0	��, we
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Figure 6. Expected shared capacity ratio of a sparse
structure to the complete pooling for various
k values.
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truncate the demand into the range �E�Di�/k	 kE�Di�� for
product i. Figure 6 plots the expected performance of the
process structures obtained by the sampling heuristic for
various values of k.
When k= 1, the demand for each product is determinis-

tic and exactly equals the capacity of the plant. Therefore,
both the dedicated structure and the complete pooling struc-
ture have zero shared capacity. When k=�, the demand
follows a truncated normal distribution in �0	��. It appears
that the choice of k has little impact on the performance of
the sparse structures. For example, as shown in Figure 6,
the performance-flexibility curve when k = 2 is already
very close to that when k=�.
Remark. The numerical study considers a balanced sys-
tem, i.e., the total capacity equals the expected total
demand. We have also extended our numerical study to an
unbalanced system, i.e., a system with some safety capac-
ity. Details are available upon request. From our studies, we
observed that the additional safety capacity would increase
the expected shared capacity for both the complete pool-
ing structure � and the sampled structure �, but would not
significantly affect the relative performance of the sampled
structure (i.e., the ratio of E�MF ��	D�� to E�MF �� 	D��).

6. Conclusion
In this paper, we provide analytical results of the perfor-
mance of the well-known chaining strategy, and we iden-
tify a class of conditions to guarantee that a sparse process
structure can perform nearly as well as the dense full flexi-
bility system. For example, when the demand distribution is
uniform or normal, our method returns an efficiency mea-
surement ACE of at least 58% and 70%, respectively. The
ratio of the expected sales from chaining to the full flexi-
bility system is even more impressive: at 89% for uniform
distribution and around 96% for normal distribution, with
a CV of at most 0.33. This partially confirms the popular

belief in the community that chaining already reaps a sub-
stantial portion of the benefits of full flexibility.
The proposed method works even for the unbalanced

(i.e., capacity not equal to mean demand) and asymmetri-
cal (i.e., demand not symmetrical around its mean) cases.
This demonstrates the applicability of our result to an even
wider range of demand distributions. We also study the pro-
cess flexibility design problem when supply and demand
are nonidentical. We show that partial flexibility structures,
properly designed, can already accrue most of the benefits
of the full flexibility system. The same insight extends to
many other areas, such as capacity pooling structure design.
In addition, our numerical study on the capacity pool-
ing problem strongly supports our theoretical results. Our
numerical examples, based on a simple sampling scheme,
show how the sampling probabilities can be approximated
and used to construct the desired network.
One of the referees pointed out that it will be useful

to examine the bound CE�n� as a function of n. This
will allow us to scrutinize the performance of the 2-chain
even for the moderate-size process flexibility problem. This
problem appears difficult because we need to analyze the
second-order effect of expected maximum flow in a 2-chain
and a fully flexible system, respectively. The result is likely
to depend on the form of the demand distribution. It is also
not known whether CE�n� is monotone in n for all demand
distributions, although we have observed this trend in our
numerical experiments.
The problem we studied in this paper is part of a broader

class of the supply chain network design problem in which
there are often associated concerns and new complications,
such as (i) fixed cost in installing each link, (ii) differ-
ent unit revenue for different product, and/or (iii) different
products might consume different amounts of the plants’
capacity. Such problems are often handled by numeri-
cal methods (using two-stage stochastic programming, for
example), with little insight to offer on the qualitative fea-
tures of a good network structure. The insights presented in
this paper are in a way a small step in this direction—under
appropriate assumptions, any sparse random network (sam-
pled using appropriate distribution) can be expected to per-
form relatively well. Furthermore, a 2-chain should work
well in the case of balanced and identical expected demand
and supply environment, and we have provided rigorous
bounds to assess the performance of 2-chain in such a set-
ting. Extending these qualitative results to the more general
supply chain network design problem is daunting and chal-
lenging, in part because we do not know of a good way to
estimate the performance of a given process structure under
random demand. In fact, to the best of our knowledge, find-
ing a good method to estimate the expected maximum flow
in an arbitrary bipartite network in random environment is
already an open problem.
There are several other directions to extend the results in

this paper. It will be interesting to consider price-responsive
demands and formulate the manufacturer’s problem as one
of maximizing profits. It would also be interesting to
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look at this problem in an oligopolistic framework and to
examine the impact of pricing and partial flexibility on the
strategic responses of the players in the market. We leave
these issues for future research.

Endnotes
1. This structure is also known as the 2-chain (because
each plant is connected to two products, and vice versa) or
the long chain (because it is the longest possible 2-chain).
2. By sparse, we mean that the structure uses far fewer
links relative to the dense process structure utilized in the
full flexibility system.
3. Our technique can be modified to handle cases when the
demand is not symmetrical about the mean. We focus our
analysis on this case merely for ease of exposition.
4. Suppose that P0 > 0. Let P ′

0 = 0	 P ′
x = Px/�1−P0�

∀x �= 0. It follows that E�% ′� = �1− P0�E�%� and E�&
′� =

�1−P0�E�&�.
5. Consider a normal demand distribution with 1 = 0�2�,
truncated at � − 31 = 0�4� and � + 31 = 1�6�. In this
case, L= 0�4 and U = 1�6.
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