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There are two dimensions to process flexibility: range versus response. Range is the extent to which a
system can adapt, while response is the rate at which the system can adapt. Although both dimensions
are important, the existing literature does not analytically examine the response dimension vis-a-vis the
range dimension.

In this paper, we model the response dimension in terms of uniformity of production cost. We distin-
guish between primary and secondary production where the latter is more expensive. We examine how
the range and response dimension interact to affect the performance of the process flexible structure. We
provide analytical lower bounds to show that under all scenarios on response flexibility, moderate form
of range flexibility (via chaining structure) still manages to accrue non-negligible benefits vis-a-vis the
fully flexible structure (the bound is 29.29% when demand is normally distributed).

We show further that given limited resources, upgrading system response dimension outperforms
upgrading system range dimension in most cases. This confirms what most managers believe in intui-
tively. We observe also that improving system response can provide even more benefits when coupled
with initiatives to reduce demand variability. This is in direct contrast with range flexibility, which is
more valuable when the system has higher variability.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Trends in consumer markets have shown a shift towards more customized products and faster upgrades in technology. This has resulted
in more product lines, shorter product life cycles, and higher demand variability. Facing increased demand uncertainty as well as height-
ened market competition, businesses can no longer rely on capacity, pricing, quality, or timeliness alone as competitive strategies. In par-
ticular, firms are turning to process flexibility to improve their ability to match supply with uncertain demand. This can be observed in
manufacturing industries such as the automotive industry (Wall, 2003; Van Biesebroeck, 2007), the textile/apparel industry (DesMarteau,
1999) and the semiconductor/electronics industry (McCutcheon, 2004), as well as service industries such as call centers (Wallace and
Whitt, 2005).

Over the past three decades, the academic literature on flexibility has grown extensively. Not surprisingly, most of the early works were
reviews and taxonomies for manufacturing flexibility (Mandelbaum, 1978; Buzacott, 1982; Browne et al., 1984; Kusiak, 1986; Gupta and
Goyal, 1989; Sethi and Sethi, 1990; Parker and Wirth, 1999; Beach et al., 2000). During this period, efforts were focused on understanding
the very nature of flexibility and on developing measures and evaluation criteria for flexible manufacturing systems (FMS). Because flex-
ibility is a broad and abstract concept, Browne et al.’s (1984) taxonomy breaks flexibility down into eight categories. The list was subse-
quently expanded by Sethi and Sethi (1990) into eleven classes, summarized in Table 1.

Various measures have been developed for the different types of flexibility. Gupta and Goyal (1989) present a classification of flexibility
measures into six types of approaches: economic consequence based approaches, performance criteria approaches, multi-dimensional ap-
proaches, petri-net approaches, information theoretic approaches, and decision theoretic approaches. For example, financial losses due to
failure to cope with demand fluctuations or machine breakdowns is a measure based on economic consequences, while the ratio of the
number of capabilities in a particular FMS to the same number for an ideal FMS with the same number of facilities (Primrose and Leonard,
1984) is a performance-based measure.
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Table 1
Definition of flexibility types.

Flexibility type Definition

Machine Ability of a machine to perform various types of operations
Material handling Ability to move different parts efficiently through a manufacturing facility
Operation Ability to produce a part in different ways
Process Ability to make different parts without a major setup
Product Ease of adding or substituting new products in a manufacturing facility
Routing Ability to produce a part by alternate routes through a system
Volume Ability to operate profitably at different overall output levels
Expansion Ease by which a manufacturing system can increase capacity and capability
Program Ability of a system to run unattended for a period of time
Production Ability to produce different parts without adding major capital equipment
Market Ease with which a manufacturing system can adapt to a changing market
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Most works in the FMS literature focus on machine flexibility and routing flexibility (Chandra and Tombak, 1992; Wahab et al., 2008).
Such emphasis on operational details is understandable because managers in the past faced the urgency of effective implementation of the
FMS already existing in their companies. Equally if not more important, though, is the strategic issue of design (i.e. what kind of flexibility
to employ and how much). However, when it comes to investing in flexibility, managers have already formed a negative impression be-
cause of the enormous cost it entails and the little success it has achieved in the past (Jaikumar, 1986). To address this issue, researchers
in the management science community (Fine and Freund, 1990; Jordan and Graves, 1995; Van Mieghem, 1998; Bish and Wang, 2004; Aks�in
and Karaesmen, 2007; Chou et al., 2008, 2009, 2010; Bassamboo et al., 2009) began to examine process flexibility, which Sethi and Sethi
(1990) define as ‘‘the ability to make different parts without a major setup”.

The theoretical justification for the effectiveness of process flexibility can be traced back to the early work of Eppen (1979). For a multi-
location newsvendor problem, he showed that the mismatch cost for a decentralized system exceed those in a centralized system, and that
the gap between these two systems depends on the demand correlation. Indeed, a decentralized system is analogous to a dedicated pro-
duction system, while the centralized system corresponds to flexible production. Likewise, it makes sense that process flexibility is most
effective when product demands are negatively correlated and least effective when demand correlation is positive.

It should be noted, however, that Eppen’s (1979) result on the benefits of consolidation or risk pooling is predicated on the assumption
of full consolidation or complete pooling. In the context of process flexibility, we must have a fully flexible production system where all
facilities can produce all products for the said theory to hold. In addition, most of the early works on process flexibility examine the appro-
priate mix of dedicated versus flexible resources, thus focusing only on fully flexible resources (Fine and Freund, 1990; Van Mieghem, 1998;
Bish and Wang, 2004). Since companies realize that full flexibility typically comes at great expense, they can only make limited use of these
theories on full flexibility, hence the need for an extended theory of partial flexibility.

With most facilities capable of producing most products, one may overinvest in process flexibility. On the other hand, when one has too
little or no flexibility at all, this may result in a high level of lost sales. This becomes a question of whether one can achieve the benefits of
full flexibility at an acceptable cost level. Jordan and Graves (1995) show via simulation studies that this is possible using the concept of a
simple ‘‘chaining” strategy. Here, a facility capable of producing a small number of products, but with proper choice of the process structure
(i.e. product-facility linkages), can achieve nearly as much benefit as the full flexibility system. In the language of Gupta and Goyal’s (1989)
flexibility measurement classification, the chaining structure may score very poorly based on a performance criterion such as inherent level
of flexibility (score of only 20% compared to the ideal fully flexible structure). However, according to an economic consequence-based ap-
proach (e.g. expected financial benefits), the chaining structure fares just as well as full flexibility.

While the idea of chaining has been extended in various directions (Graves and Tomlin, 2003; Gurumurthi and Benjaafar, 2004;
Hopp et al., 2004; Iravani et al., 2005), efforts were also expended to strengthen the analytical aspect of the chaining theory (Aks�in and
Karaesmen, 2007; Chou et al., 2009, 2010; Bassamboo et al., 2009). We briefly discuss some of the findings in Chou et al.’s (2010) paper.
The approach taken is asymptotic analysis, i.e. their objective is twofold. First, they examine the effectiveness of chaining as system size
grows very large. While Jordan and Graves (1995) used a 2-chain (i.e. each node has degree 2), when system size is large, say n = 100,
should a firm use a 20-chain? How would a 2-chain perform? Secondly, Chou et al. (2010) are able to prove their results analytically.

To illustrate asymptotic analysis, we consider the following n-facility, n-product example. Suppose each plant has a capacity of Cj = 100
units for each j, and each product consumes one unit of capacity and has an expected demand of Di = 100 units for each i.1 We assume fur-
ther that the demand is normally distributed with a standard deviation of 33 units (so that the probability of negative demand is negligible),
and let D be the vector of demand realization. Process flexibility can be represented using a bipartite graph. A set AðnÞ of n product nodes lies
on one side of the graph while a set BðnÞ of n facility nodes lies on the other side. A link connecting product node i with facility node j means
that facility j has the capability to produce product i. Let GðnÞ#AðnÞ � BðnÞ denote the set of all such links, i.e. the edge set of the bipartite
graph. Hence, each process flexible structure can be uniquely represented by the edge set GðnÞ. Below are the three most common structures.
See Fig. 1(a)–(c) for an illustration of these structures.

1. The dedicated structure: DðnÞ ¼ fði; iÞji 2 f1;2; . . . ; ngg.
2. The chaining structure: CðnÞ ¼ DðnÞ [ fð1;2Þ; ð2;3Þ; . . . ; ðn� 1;nÞ; ðn;1Þg.
3. The fully flexible structure: FðnÞ ¼ AðnÞ � BðnÞ.
1 Note that the (mean) demand and supply are balanced and identical in this case.
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Fig. 1. Bipartite graph representation of 3 � 3 process flexible structures.

Table 2
Expected sales ratio and expected benefits ratio as system size increases.

System size n Expected sales Ratios

Dedicated Chaining Fully flexible Expected sales (%) Expected improvement (%)

10 864.47 949.36 955.14 99.39 93.62
15 1297.51 1434.44 1447.00 99.13 91.59
20 1728.52 1915.78 1938.93 98.81 89.00
25 2179.81 2401.94 2441.73 98.37 84.81
30 2601.84 2871.06 2929.84 97.99 82.08
35 3044.48 3352.66 3430.70 97.73 79.79
40 3469.06 3807.16 3905.48 97.48 77.47
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To obtain the expected system sales of structure GðnÞ, we simulate several scenarios of the demand vector D and take the expected value
of the optimal sales over all demand scenarios. In each scenario, we solve the following maximum flow problem, where xij is the amount of
product i produced by facility j and Z�ðGðnÞ;DÞ denotes the optimal sales.
2 We
Z�ðGðnÞ;DÞ ¼ max
Xn

i¼1

Xn

j¼1

xij

s:t:
Xn

j¼1

xij 6 Di;
Xn

i¼1

xij 6 Cj

xij P 0 8 i; j ¼ 1; . . . ; n;

xij ¼ 0 8ði; jÞ R GðnÞ:
Table 2 shows the expected sales E½Z�ðGðnÞ;DÞ� of the different structures as n varies. The expected sales ratio is the ratio of expected sales in
a chaining structure vis-a-viz the fully flexible structure. The expected improvement ratio measures the benefits of a structure (whether
chaining or full flexibility) in terms of improvement over the dedicated structure, i.e. expected sales of the given structure minus expected
sales of the dedicated structure, vis-a-viz the improvement obtained by the fully flexible structure.

For small n (say n = 10), our simulation shows that the expected sales in the three structures are 864.47, 949.36, and 955.14, respec-
tively. This demonstrates that chaining already achieves most (93.62%) of the benefits of full flexibility. However, Table 2 also shows that
as the system expands, chaining efficiency2 deteriorates to as low as 77.47% for n = 40. Chou et al. (2010) prove that chaining efficiency for the
above example converges to approximately 70% as n approaches infinity. Suitable for any general demand distribution, the approach they
developed provides an exact method to capture the asymptotic performance of the chaining structure. Because chaining efficiency decreases
in system size, the asymptotic chaining efficiency obtained using this method serves as an analytical lower bound on the performance of any
finite chaining system.

Another classification of flexibility is by Slack (1987), who suggested that flexibility has two dimensions: range and response. Range is
the extent to which a system can adapt, whereas response is the rate at which the system can adapt. Although both dimensions are impor-
tant, most papers in the process flexibility literature only consider range flexibility (e.g. partial flexibility versus full flexibility). To the best
of our knowledge, there has been no paper in the literature that analytically examines both range flexibility and response flexibility. This
paper is an attempt to bridge this gap by extending the theory of partial (range) flexibility (Jordan and Graves, 1995; Chou et al., 2010) to
include the response dimension.

To further understand the response dimension, we observe that Slack’s (1987) work seems to have influenced Upton (1994) who defined
flexibility as ‘‘the ability to change or react with little penalty in time, effort, cost or performance”. Like Slack (1987), Upton (1994) refers to
the extent to which the system can change or react as range. Unlike Slack (1987), he further breaks down the response dimension into
mobility and uniformity. Mobility is measured by the penalty incurred as the system switches from state to state. On the other hand, uni-
formity is measured by how the system can maintain the same performance level as it changes its state.

To model mobility, we can consider the setup time or the setup cost incurred when switching from producing product A to product B.
Both are undesirable as setup time effectively reduces capacity whereas setup cost reduces total profits. Moreover, a fully flexible system
can be expected to exhibit more production switching than a less flexible system like chaining. Modeling response this way, chaining
also refer to the expected improvement ratio of chaining to full flexibility as ‘‘chaining efficiency”.
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efficiency or the performance of sparse structures can only improve as the response level deteriorates. This implies that the core model in
Chou et al. (2010) as well as their results are already robust against such setup effects. Hence, modeling response as mobility may not be a
productive endeavor.

In this paper, we model response as uniformity of production cost. To this end, we distinguish between primary and secondary produc-
tion. Suppose that the facilities are primarily designed to produce certain products and can only serve as less efficient (or more costly) sec-
ondary (or back-up) production options for other products. We then model the response dimension in terms of production cost, whereby
secondary production is at least as costly as primary production.3 If secondary production cost is high, we say that the response is low. If sec-
ondary production cost is low (comparable to primary production), we say that the response is high. In the special case when secondary pro-
duction cost equals primary production cost, we say that the response is perfect. To incorporate these production costs, we use an expected
profit criterion for evaluating process flexibility. This criterion generalizes the expected sales criterion used in Jordan and Graves (1995)
and Chou et al. (2010).

We seek to address the following research questions. (1) What happens to the effectiveness of chaining or sparse structure when re-
sponse is not perfect? (2) Can we still analytically capture the value of chaining efficiency as in Chou et al. (2010)? (3) Given limited capital,
how do we choose our investment between range flexibility and response flexibility?

The rest of the paper is organized as follows. In Section 2, we study the general effect of the response dimension on process flexibility.
Section 3 presents our methods that analytically capture asymptotic chaining efficiency for various response levels. We then examine in
Section 4 the investment trade-off between range and response. Finally, Section 5 concludes the paper.

2. Effect of response dimension

In this section, we examine the effect of the response dimension on general process flexible structures. To this end, we consider a firm
with m products and n plants, such that m P n which is typically the case. Product i has random demand Di whereas plant j has fixed capac-
ity Sj.4 For this general setting, the process flexible structure is represented by Gðm;nÞ. To model production efficiency, we assume that each
product has exactly one primary facility while each facility serves as primary facility for at least one product. We further denote by /(i) the
index of the primary facility designated to produce product i. Any link ði; jÞ 2 Gðm;nÞ such that j – /(i) is considered secondary production.
Each unit of product i sold earns the firm r dollars. Without loss of generality, we ignore the goodwill cost associated with unsatisfied demand.5

If this unit of demand is produced by a primary plant /(i), the production cost is cp. On the other hand, this same product produced by a sec-
ondary plant j – /(i) costs the firm at least as much at cs P cp. We call cp and cs the costs of primary and secondary production, respectively. To
avoid triviality, we assume cs < r. We can then use the cost parameter cs to capture the system response level as summarized in the table below.

As in Chou et al. (2010), our goal is to measure the expected financial benefits of process flexible structures. To incorporate the response
dimension, the previous expected sales criterion must be extended to the expected profit criterion. In lieu of the Maximum Flow problem,
we solve the following profit maximization problem, where P denotes the optimal profit.
th

Re
Secondary cost
3 Production efficiency can also be modeled in terms of production time. I
at in order to retain the original production speed, one has to spend mor
4 At this stage, we do not make any assumptions on the demand distribu
5 In the case where the firm incurs a goodwill cost of g for every unit of uns
placing r with �r, our analysis carries over.
Range of cs
n that case, we can approximate increased production time by increased pro
e on other resources like labor.
tion nor on system symmetry.
atisfied demand, we add the goodwill cost to the unit revenue and get the im
System response
High
 cs P 1
2 ðr þ cpÞ
 Low
Low
 cp < cs <
1
2 ðr þ cpÞ
 High
Same as primary
 cs = cp
 Perfect
PðGðm;nÞ;D; csÞ ¼ maxðr � cpÞ
Xm

i¼1

xi;/ðiÞ þ ðr � csÞ
Xm

i¼1

X
j–/ðiÞ

xij ð1Þ

s:t:
Xn

j¼1

xij 6 Di

Xm

i¼1

xij 6 Sj

xij P 0 8i ¼ 1; . . . ;m;8 j ¼ 1; . . . ;n

xij ¼ 0 8 ði; jÞ R Gðm;nÞ
We define a measure called Flexibility Efficiency, which generalizes the expected benefits ratio in Table 2 from expected sales to expected
profits. The measure is computed as follows.
FEðGðm;nÞ; csÞ ¼
E½PðGðm; nÞ;D; csÞ� � E½PðDðm;nÞ;D; csÞ�
E½PðFðm;nÞ;D; csÞ� � E½PðDðm;nÞ;D; csÞ�
where Dðm;nÞ ¼ fði;/ðiÞÞji ¼ 1; . . . ;mg is the dedicated structure with only primary links, and Fðm;nÞ ¼ AðmÞ � BðnÞ is the fully flexible
structure.

Observe that the arguments of FEðGðm;nÞ; csÞ adequately captures the dimensions of process flexibility, as jGðm;nÞj and cs, respectively
represent the range and response levels. For G1ðm; nÞ � G2ðm;nÞ, it is easy to see that FEðG1ðm;nÞ; csÞ 6 FEðG2ðm;nÞ; csÞ since G2ðm;nÞ has a
larger feasible region. This means that upgrading system range improves system performance. The same can also be said about upgrading
system response as shown in the following result.
duction cost in the sense

puted revenue �r ¼ r þ g.
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Theorem 1. For a fixed flexible structure Gðm;nÞ, such that Dðm;nÞ#Gðm;nÞ#Fðm;nÞ, its flexibility efficiency is non-increasing in cs over the
interval [cp,r).
Proof. Please refer to Appendix A. h

It follows that for any flexible structure, its flexibility efficiency can only worsen or stay the same as system response worsens. In other
words, when we take into account the possibility of low response flexibility, the value of any flexible structure may lessen.6 This serves as a
precaution not to oversell the benefits of any structure based on its range flexibility alone, and as a call to examine the response dimension
when investing in flexibility.

Although the previous result may not have come unexpected, a more surprising result is that when system response deteriorates to a
certain level (i.e. it enters the low response region), further deterioration will cause no more harm to the system than it does to the full
flexibility system. The following theorem captures this insight.

Theorem 2. For a fixed flexible structure Gðm;nÞ, such that Dðm;nÞ#Gðm;nÞ#Fðm;nÞ; FEðGðm;nÞ; csÞ is constant over the interval ½12 ðr þ cpÞ; rÞ.
Proof. Note that the profit margin derived from secondary production is lower than or equal to that derived from primary production, i.e.
r � cs 6 r � cp. This implies that one must perform secondary production only when either of two conditions holds. The first is when a par-
ticular facility has excess capacity after exhausting all possible primary production. When it has no excess capacity, secondary production
can still occur if it can transfer some primary production to another facility (albeit secondary for that product) in order to free up capacity
for secondary production. In other words, one trades a unit of primary production for two units of secondary production.

Since cs 2 ½12 ðr þ cpÞ; rÞ, it follows that r � cp P 2(r � cs). This means that trading one primary unit for two secondary units leaves the
system worse off. Hence, the optimal allocation can be obtained greedily by letting each facility produce as many units of its primary
products as possible, and only thereafter use its extra capacity, if any, to produce the extra demand, if any, of secondary product. If Xp and Xs

are the optimal primary and secondary production, then we have
6 Not
Xp ¼
Xn

j¼1

min
X

i:/ðiÞ¼j

Di; Sj

 !
and Xs ¼ min

Xm

i¼1

Di;
Xn

j¼1

Sj

 !
�
Xn

j¼1

min
X

i:/ðiÞ¼j

Di; Sj

 !
Hence,
FEðGðm;nÞ; csÞ ¼
E ðr � csÞXs � ðr � cpÞ

Pn
j¼1 min

P
i:/ðiÞ¼jDi; Sj

� �
� Xp

� �h i
E ðr � csÞ min

Pm
i¼1Di;

Pn
j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �� �h i
¼ E½ðr � csÞXs�

E ðr � csÞ min
Pm

i¼1Di;
Pn

j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �� �h i
¼ E½Xs�

E min
Pm

i¼1Di;
Pn

j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �� �h i �
Theorem 2 shows that once the response level hits the halfway mark between perfect response and worst-case response, the flexibility
efficiency of the structure starts to plateau at a constant level. This is because at that point, any additional deterioration in response can
cause only as much harm to the structure as it does to the fully flexible structure. We present two examples to illustrate this phenomenon.
The first is a symmetric system with uncertain product demands and fixed facility capacities. The second is a real-life case study on a bread
delivery system in Singapore. Unlike the first example, the ‘‘Food From the Heart” delivery system is asymmetric with uncertain bread sup-
plies but fixed demands.
Example 1. Chaining Structure for a 3 � 3 system with uniform demand
Suppose all product demands are i.i.d. and uniformly distributed in [0,2l]. Let CE denote the flexibility efficiency of the chaining

structure, i.e. CEð3; csÞ ¼ FEðCð3Þ; csÞ. It is not difficult, though it is tedious, to evaluate the CE(3,cs) in closed form for this special case.
CEð3; csÞ ¼
1� 3

11
cs�cp

r�cs
if cp 6 cs <

1
2 ðr þ cpÞ

8
11 if 1

2 ðr þ cpÞ 6 cs < r

(

Without loss of generality, we let r = 1 and cp = 0, and we plot as follows.
As in Theorems 1 and 2, Fig. 2 shows that chaining efficiency deteriorates as system response worsens. However, the amount of

deterioration does not decrease below the 72.7% mark. This means that upon entering the low response region, any further deterioration in
response level will have no more effect on the chaining structure than it would have on full flexibility. Since we expect the 72.7% lower bound
to decrease further as system size increases, we examine in Section 3 the asymptotic limit of this lower bound as n approaches infinity.
Example 2. Food from the Heart, Singapore
Food from the Heart (FFTH) is a charity organization based in Singapore, where the focus is on ensuring that end-of-day bread donations

from bakeries go into the right hands, those of the people in the homes supported by the organization (Chou et al., 2009). The logistics
involved is simple. Each bakery is served by one volunteer each night to bring the donated bread to his or her designated home. An FFTH
e that the result does not require any assumption about the demand distribution, facility capacity, or system symmetry.



Fig. 2. Chaining efficiency as a function of response (Uniform 3 � 3).

Fig. 3. Food from the heart – flexible routing system.
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Fig. 4. Food from the heart – flexibility efficiency versus response level.
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administrator selects routes (bakery-home assignments) and assigns a volunteer to each route. To reduce the burden on the volunteers, the
administrator usually assigns a fixed route to each volunteer. Because the supply of bread from each bakery on each night is random, the
rigidity of having only fixed primary routes inevitably leads to supply and demand mismatch. For an 18-bakery 9-home study of the FFTH
system, Chou et al. (2009) examine how to optimally add a set of 18 secondary routes to the existing system of 18 primary routes.

Fig. 3 shows the flexible routing system generated by their algorithm. The solid lines pertain to the original primary routes, while the
broken lines are the secondary routes. While the homes have fixed demands for bread, the bakeries’ daily supplies are recorded for 66 days.
The means and standard deviations, as well as the fixed demands are shown in Fig. 3. All units are in kilograms.

In this example, we investigate how the FFTH flexible routing system performs as system response deteriorates. While Chou et al. (2009)
show that a system with uncertain supply and fixed demand is equivalent to one with uncertain demand and fixed supply, we also observe
that the FFTH system has more uncertain nodes (18) than fixed nodes (9). Hence, the FFTH system fits into the general model in this section.
Moreover, we let r = 1 and cp = 0, and define u = 1 � cs as the utility from one kilogram of bread. Because cs 2 [0,1), if follows that u 2 (0,1]
can be a surrogate for the response level. We simulate the supplies at the bakeries over the 66-day empirical distribution. We generate
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1000 demand scenarios and take the average maximum utility over all scenarios. Fig. 4 plots the flexibility efficiency of the FFTH flexible
routing system as response level changes. As response deteriorates, so does flexibility efficiency. However, upon entering the low response
region, the system will no longer achieve benefits any lower than 65% of the fully flexible system. This example illustrates the applicability
of our results to asymmetric systems and uncertain supplies.

To sum up, our discussion yields the following fundamental insight on the performance of flexible system:

While a little range flexibility allows the system to reap most of the benefits that can be accrued from a fully flexible system in the per-
fect response scenario, there is a threshold below which any further loss in response flexibility has absolutely no impact on the perfor-
mance of the flexible system.
3. Asymptotic analysis for range and response

In this section, we examine how the relationship between flexibility efficiency and response level changes as system size grows to infin-
ity. Particularly, we extend Chou et al.’s (2010) results on asymptotic chaining efficiency to factor in less than perfect response. For ease of
exposition, we consider a stylized model where all products have independent, identically distributed, and symmetric demands, with val-
ues in the range [0,2E (Di)]. Examples of such demand distributions are uniform and (truncated) normal distributions. Note that our anal-
ysis can be extended easily to more general and asymmetric demand distribution. On the supply side, all facilities have capacities Si = E
(Di) = l," i. This is the symmetric system, where demand and supply are identical and balanced.

Because of the assumption of symmetry, we can model demand in the following general form. Let Di = l + aiYi, where 0 6 Yi 6 l and
ai ¼
1; with probability 1

2

�1; with probability 1
2

(

Note that Yi follows some distribution with support [0,l] and represents the absolute deviation of demand Di from the mean l. Our interest
is in characterizing the chaining efficiency defined as follows
CEðn; csÞ ¼ FEðCðnÞ; csÞ ¼
E½PðCðnÞ;D; csÞ� � E½PðDðnÞ;D; csÞ�
E½PðFðnÞ;D; csÞ� � E½PðDðnÞ;D; csÞ�

:

From (10)–(12), we can express the denominator of CE(n,cs) as follows:
E½PðFðnÞ;D; csÞ� � E½PðDðnÞ;D; csÞ� ¼ ðr � csÞE min
Xn

i¼1

Di;nl
 !

�
Xn

i¼1

minðDi;lÞ
" #

ð2Þ
The challenge in our analysis is to evaluate the term E½PðCðnÞ;D; csÞ�. As shown in Theorem 2, the optimal production allocation varies dra-
matically depending on whether cs falls in the low or high response region.

3.1. Low response region

In this region, cs P 1
2 ðr þ cpÞ, which implies r � cp P 2(r � cs). That is, one unit of primary production is at least as profitable as two units

of secondary production. Hence, optimal allocation must be greedy as follows. Let each facility produce as many units as possible of its
primary product, and only thereafter use its extra capacity, if any, to produce the extra demand, if any, of its secondary product.
x�ii ¼minðDi;lÞ 8 i ¼ 1; . . . ;n

x�i;iþ1 ¼min½ðDi � lÞþ; ðl� Diþ1Þþ� 8 i ¼ 1; . . . ; n� 1;

x�n1 ¼ min½ðDn � lÞþ; ðl� D1Þþ�
ð3Þ
The following well-known facts on the normal distribution will be useful for our next result.

Lemma 1. If X, X1, X2 � N(0,r), and X1, X2 are independent, then E½Xþ� ¼ rffiffiffiffiffi
2p
p and E min Xþ1 ;X

þ
2

� �� �
¼ rffiffiffiffiffi

2p
p 1� 1ffiffi

2
p

� �
.

Theorem 3. When 1
2 ðr þ cpÞ 6 cs < r and for sufficiently large n, the chaining efficiency is decreasing in n and bounded below by the asymptotic

chaining efficiency
ACEðcsÞ ¼ lim
n!1

CEðn; csÞ ¼
1
2

E½minðY1;Y2Þ�
E½Y1�

6 0:5:
Proof. We first write the expected optimal profit for the chaining structure.
E½PðCðnÞ;DÞ� ¼ ðr � cpÞE
Xn

i¼1

minðDi;lÞ
" #

þ ðr � csÞE
Xn

i¼1

min½ðDi � lÞþ; ðl� Diþ1Þþ�
" #

¼ nðr � cpÞE½minðDi;lÞ� þ nðr � csÞE½min½ðD1 � lÞþ; ðl� D2Þþ��

¼ nðr � cpÞE½minðDi;lÞ� þ
1
4

nðr � csÞE½minðY1;Y2Þ� ð4Þ
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The first equation is from (3), while the second equation comes from the identical distribution of the demands. The last equation is due to the
definition of the absolute demand deviation Yi. Since the first term in (4) is also the expected optimal profit for the dedicated structure, the
numerator of CE(n,cs) becomes
7 We
1
4

nðr � csÞE½minðY1;Y2Þ� ð5Þ
For the denominator, we let T ¼
P

iDi. Since n is sufficiently large, we invoke the Central Limit Theorem to get T � Nðnl;
ffiffiffi
n
p

rÞ and
X ¼ T � nl � Nð0;

ffiffiffi
n
p

rÞ, where r is the standard deviation of demand Di. Then, we use (2), Lemma 1(a), and the definition of Yi to obtain
ðr � csÞE minðT;nlÞ �
Xn

i¼1

minðDi;lÞ
" #

¼ ðr � csÞE
X

i

Di � Xþ �
X

i

Di þ
X

i

ðDi � lÞþ
" #

¼ ðr � csÞ nEðD1 � lÞþ �
ffiffiffi
n
p

rffiffiffiffiffiffiffi
2p
p

	 

¼ nðr � csÞ

1
2

E½Y1� �
1ffiffiffi
n
p rffiffiffiffiffiffiffi

2p
p

	 

ð6Þ
Combining (5) and (6), we obtain
CEðn; csÞ ¼
1
4 E½minðY1;Y2Þ�
1
2 E½Y1� � 1ffiffi

n
p rffiffiffiffi

2p
p

which is decreasing in n. By taking limit, we arrive at the desired result. h

Our analysis above does not consider that the chaining structure usually exploits long chains – chains that link up as many supply and
demand nodes as possible. In particular, we only consider that the secondary links in the chaining structure form a perfect matching. Such a
matching can also be formed by a collection of short chains. As a result, a long chain performs identically to short chains under this sce-
nario. This observation contrasts with the fundamental insight in the literature where system response is assumed perfect.

3.2. Perfect response: the expected sales criterion

When cs = cp, the expected profit criterion reduces to the expected sales criterion. While Chou et al. (2010) have developed a method
that analytically obtains the asymptotic chaining efficiency (ACE), their method does not extend to the general high response region. In
this section, we describe another method which can provide a lower bound for ACE in the perfect response case and can extend to other
high response scenarios.

Since expected optimal profit becomes expected maximum flow, we revert to the maximum flow notation Z�ðGðnÞ;DÞ for structure GðnÞ
used in Section 1. If follows that
CEðn; cpÞ ¼
Expected Chaining Gain

Expected Full Flexibility Gain
¼ E½Z�ðCðnÞ;DÞ� � E½Z�ðDðnÞ;DÞ�

E½Z�ðFðnÞ;DÞ� � E½Z�ðDðnÞ;DÞ�
Similar to (6), we can express the denominator as
Expected Full Flexibility Gain ¼ n
1
2

E½Y1� �
1ffiffiffi
n
p rffiffiffiffiffiffiffi

2p
p

� �
ð7Þ
For the numerator, consider any demand realization D. Observe that each demand node i has either Di > l (positive node) or Di < l (negative
node) with equal likelihood.7 We define a cluster to be a run of consecutive positive nodes followed by a run of consecutive negative nodes. For
example, suppose n = 10 and the demand outcome is {N,P,P,P,N,N,N,P,N,N} where P denotes a positive node while N denotes a negative node.
The 2nd to 7th nodes form the first cluster {P,P,P,N,N,N} while the last 3 and the 1st form the next cluster {P,N,N,N}. This allows us to break the
whole system into smaller pieces (clusters), and we can easily optimize the flow for each cluster. The aggregate solution from all clusters re-
mains feasible for the max-flow problem of the whole system, and thus provides a lower bound for Z�ðCðnÞ;DÞ, that is,
Expected Chaining Gain P E½Sum of Cluster Chaining Gains� ¼ E½Number of Clusters� � E½Cluster Chaining Gain� ð8Þ
The last equation holds for large n, and is the result of Wald’s equation (Ross, 2003, p. 462) and the fact that all clusters are probabilistically
identical and independent.

To obtain expected cluster chaining gain, we consider just one cluster. For this cluster, the lengths of the positive and negative runs as
well as the deviations of realized demands from the mean are all random variables. Let M and N be the lengths of the positive and negative
runs, respectively. Both M and N follow a geometric distribution with p = 0.5. From our earlier definition, we have Yi for the demand devi-
ations (Yi = Di � l for positive nodes while Yi = l � Di for negative nodes). To apply (8), we derive the following lemmas.

Lemma 2. For any cluster with M positive nodes followed by N negative nodes, the maximum chaining flow is
Max Flow ¼min
XMþN

i¼1

Di; ðM þ 1Þlþ
XMþN

i¼Mþ1

Di; ðM þ NÞl
 !
and the cluster chaining gain is
Cluster Chaining Gain ¼min
XM

i¼1

Yi;l;
XMþN

i¼Mþ1

Yi

 !
assume demand distribution has continuous support.



Fig. 5. Maximum flow problem: C1 ¼ fs;1;2; . . . ;M � 1;M þ Ng.
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Proof. We use the equivalence between max-flow and min-cut to derive the above result. Consider the max-flow problem on the network
shown in Fig. 5, from source s to sink t. All links are directed from left to right with capacities as indicated. Arcs from demand nodes to
supply nodes have infinite capacities. Let C be a cut of the network and VðCÞ be its cut value. Because of the infinite capacities of
demand-to-supply arcs, every cut with finite cut value can be uniquely represented by {s} union with a subset of S ¼ f1;2; . . . ;M þ Ng.
For example, C1 ¼ fs;1;2; . . . ;M � 1;M þ Ng represents the cut in Fig. 5, with cut value VðC1Þ ¼

PMþN�1
i¼M Di þ ðM þ 1Þl.

Let Sþ ¼ f1;2; . . . ;Mg and S� ¼ fM þ 1;M þ 2; . . . ;M þ Ng. Then every cut can be written as C ¼ fsg [ P [N where P # Sþ;N # S�.
Recall that Di > l for i 2 Sþ and Di < l for i 2 S�. Let C� ¼ fsg [ P� [N� be a minimum cut of the above network flow problem. It is easy to
see that the search for a minimum cut can be restricted to the three cuts {s}, fsg [ Sþ, and fsg [ S, from which the first result follows.

The second result is an easy consequence of the first, since
Cluster Chaining Gain ¼Max Chaining Flow�Max Dedicated Flow

¼min
XMþN

i¼1

Di; ðM þ 1Þlþ
XMþN

i¼Mþ1

Di; ðM þ NÞl
 !

�
XM

i¼1

lþ
XMþN

i¼Mþ1

Di

 !
¼ min

XM

i¼1

Yi;l;
XMþN

i¼Mþ1

Yi

 !
�

Lemma 3. For an n � n system,
E½Number of Clusters�
n

! 1
4

as n!1
Proof. Without loss of generality, assume node 1 is negative. Then, the number of clusters from node 1 to node n can be viewed as a count-
ing process, in fact, a renewal process whereby each occurrence of a cluster constitutes a renewal. By the Elementary Renewal Theorem
(Ross, 2003, p. 409) and because E[cluster length] = E[M + N] = 4, the result follows. h

Combining (7), (8), Lemmas 2 and 3, we obtain the following key result.

Theorem 4. When system response is perfect (cs = cp), the asymptotic chaining efficiency is bounded below as follows:
ACEðcpÞ ¼ lim
n!1

CEðn; cpÞP
1
2

E min
PM

i¼1Yi;
PN

i¼1
eY i;l

� �h i
E½Y1�
where M,N are geometric r.v. with p = 0.5, and Yi, eY i are i.i.d. random variables with support [0,l].
3.3. High response region

In this region, cp < cs <
1
2 ðr þ cpÞ, which implies r � cp < 2(r � cs). That is, it is profitable to displace one unit of primary production in

favor of two units of secondary production. Therefore, the greedy production allocation used in Section 3.1 no longer works. On the other
hand, the maximum flow approach in Section 3.2 may include using the (extra) capacity of facility i to meet the extra demand for product
i + j for any i and j, through the intermediate facility i + 1,i + 2,. . .,i + j � 1. We call such an allocation a j-order displacement. It is easy to see
that a j-order displacement is justified only if j units of secondary production are as profitable as j � 1 units of primary production, a
requirement not necessarily satisfied by r � cp < 2(r � cs). Hence, our analysis requires dividing this high response region into countably
infinite subcases, namely,
k
k� 1

6
r � cp

r � cs
<

k� 1
k� 2

; 8 k ¼ 3;4; . . . ð9Þ
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For subcase k, a j-order displacement is profitable for j < k, but not for j P k. Therefore, if we use the maximum flow approach, we should
distinguish flows that result in profitable displacement from flows that do not. In particular, the optimal allocation should not include dis-
placements of order k or higher. Secondly, the flows must be assigned different weights, corresponding to different profit levels, depending
on the amount of production displaced. Specifically, for a j-order displacement, the unit profit is j(r � cs) � (j � 1)(r � cp), provided j < k.

We use the same terminology in Section 3.2, and let M + N denote the cluster length and write as CCG for Cluster Chaining Gain in short.
Let g(j) be the expected maximum flow net of maximum dedicated flow, for a cluster of length j. That is,
Table 3
Low res

Case

1
2
3
4
5
6

gðjÞ ¼ E½CCGjM þ N ¼ j�:
We obtain g(j) in a manner similar to Section 3.2 and set g(1) = 0 for completeness. Let D g(j) = g(j + 1) � g(j) represent the incremental gain in
a cluster of length j + 1 over a cluster of length j. The asymptotic chaining efficiency can then be bounded as follows.

Theorem 5. For k = 3,4,. . ., if 1
k ½r þ ðk� 1Þcp� 6 cs <

1
k�1 ½r þ ðk� 2Þcp�, then
ACEðcsÞ ¼ lim
n!1

CEðn; csÞP
Pk�1

i¼1 ½iðr � csÞ � ði� 1Þðr � cpÞ�DgðiÞ � PfM þ N > ig
2ðr � csÞE½Y1�
where Dg(j) = g(j + 1) � g(j), gðjÞ ¼ E min
PM

i¼1Yi;
PN

i¼1
eY i;l

� �
jM þ N ¼ j

h i
, g(1) = 0, and M,N are geometric with p = 0.5, and Yi, eY i are i.i.d. ran-

dom variables with support [0,l].
We omit the technical details of the proof due to space constraint. Theorems 3–5 complete the characterization of asymptotic chaining

efficiency over all relevant response levels. Next, we show some examples.

3.4. Computational examples

3.4.1. Uniform distribution
Suppose that demand Di � U[0,2l],"i. It follows that Yi � U[0,l]. It can be shown that
E½Y1� ¼
1
2
l; E½minðY1;Y2Þ� ¼

1
3
l; r ¼ lffiffiffi

3
p

Hence, for 1
2 ðr þ cpÞ 6 cs < r,
CEðn; csÞ ¼
1

3� 2
ffiffi
6
pffiffi
n
p ffiffiffi

p
p
; ACEðcsÞ ¼

1
3
	 33:33%:
In this case, even with very poor response flexibility and system size n becomes extremely large, the chaining structure with only 2n links
still manages to accrue 33.33% of the benefits of the fully flexible system with n2 links. Moreover, if response flexibility improves, this worst-
case performance will likewise improve.

3.4.2. Normal distribution
Suppose Di � N(l,r),"i. It follows that Xi = Di � l � N(0,r) and Yi = jXij. Assume further that l P 3r so that negative demand has neg-

ligible probability. It can derived that
E½Y1� ¼
2rffiffiffiffiffiffiffi
2p
p ; E½minðY1;Y2Þ� ¼

4rffiffiffiffiffiffiffi
2p
p 1� 1ffiffiffi

2
p

� �

Hence, for 1

2 ðr þ cpÞ 6 cs < r
CEðn; csÞ ¼
1� 1ffiffi

2
p

1� 1ffiffi
n
p
; ACEðcsÞ ¼ 1� 1ffiffiffi

2
p 	 29:29%
Note that this lower bound of 29.29% is not only independent of the actual magnitudes of l and r, but also independent of CV , r/l. This
contrasts with the perfect-response result in Chou et al. (2010), where the ACE for normal distribution varies with the CV. Hence, as long as
l P 3r but regardless of the CV, the chaining structure with 2n links can still achieve 29.29% of the fully flexible system with n2 links. As
system response improves, this lower bound also improves.

3.4.3. Beta distribution
The methods can be extended to analyze the case when demand is not symmetric or not balance. We illustrate the approach using beta

distribution as demand distribution. While the general beta distribution requires four parameters, we can focus (WLOG) on the standard
ponse ACE for beta distribution.

a b l r S/l

1.2 (%) 1.1 (%) 1 (%) 0.9 (%) 0.8 (%)

0.5 0.5 0.50 0.3536 46.26 40.70 35.81 40.86 45.64
1 1 0.50 0.2887 45.98 39.67 33.90 40.98 46.98
2 2 0.50 0.2236 49.15 39.07 31.44 41.58 50.52
1 3 0.25 0.1936 39.38 34.55 29.88 33.85 38.46
4 1 0.80 0.1633 74.41 51.23 28.93 48.06 64.03
2 5 0.29 0.1597 45.04 35.44 29.38 34.68 44.21
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beta distribution which has only two parameters; namely, a and b. This is because ACE is invariant over the scale of demand relative to sup-
ply. We consider 6 different sets of parameters and 5 different ratios of supply to mean demand. The results are summarized in Table 3.
Observe that for Case 2, which is the uniform distribution, we reproduce the result in Section 3.4.1 for the balanced scenario (i.e. S = l).

By varying the values of cs, our simulation result shows that all systems considered achieve at least about 30% of the benefits of full
flexibility even in the worst case. This bound further improves as system response improves or as expected demand deviates further away
from total supply. This is already evident in the low response case shown in Table 3. This implies that our earlier results obtained for the
balanced case are conservative estimates for the non-balanced case.

4. Trade-offs and complements

4.1. Range versus response

Although we have seen that the chaining structure manages to accrue non-negligible benefits even in the worst case (e.g. 29.29% for
normally distributed demands), one can certainly still improve his system performance by either upgrading response flexibility or range
flexibility. With limited resources, it is of interest to know which upgrade provides greater improvement: a high response with limited
range or a high range with low response. For example, chaining with low secondary cost or full flexibility with high secondary cost?

Let S1ðnÞ and S2ðnÞ be the high response (chaining) and high range (full flexibility) systems, respectively. i.e. S1ðnÞ ¼ CðnÞ and
S2ðnÞ ¼ FðnÞ. Denote their respective costs of secondary production by c1 and c2 such that c1 < c2. Our goal then is to compare the ratios
of each system to the best possible system, which is full flexibility with secondary cost at cp. That is,
lim
n!1

E½PðS1ðnÞ;D; c1Þ�
E½PðFðnÞ;D; cpÞ�

versus lim
n!1

E½PðS2ðnÞ;D; c2Þ�
E½PðFðnÞ;D; cpÞ�
For the moment, suppose that c2 P 1
2 ðr þ cpÞ and c1 = cp. It is easy to see that
lim
n!1

E½PðS1ðnÞ;D; c1Þ�
E½PðFðnÞ;D; cpÞ�

¼ lim
n!1

E½Z�ðCðnÞ;DÞ�
E½Z�ðFðnÞ;DÞ� ¼ ACEþ ð1� ACEÞ lim

n!1

E½Z�ðDðnÞ;DÞ�
E½Z�ðFðnÞ;DÞ�

� �
¼ ACEþ ð1� ACEÞ l� E½ðl� DiÞþ�

l

� �
¼ 1� ð1� ACEÞ � E½ðl� DiÞþ�

l

where
ACE, lim
n!1

CEðn; cpÞ ¼ lim
n!1

E½Z�ðCðnÞ;DÞ� � E½Z�ðDðnÞ;DÞ�
E½Z�ðFðnÞ;DÞ� � E½Z�ðDðnÞ;DÞ�

� �
:

Moreover, we can prove a bound on ACE following the generalized random walk approach used in Chou et al. (2010) – where the ACE is
related to some performance indicators (stopping time and cycle overshoots) in a related generalized random walk. Due to space limitation,
we refer the readers to Chou et al. (2010) for the technical details.

Lemma 4 (Chou et al. (2010)).
ACE ¼ 1� E½w0�
2E½s0�E½ðDi � lÞþ�

P
1
2
:

where w0 and s0 are the cycle overshoot and cycle duration in the generalized random walk approach.
Proof. The result follows from Theorem 2 in Chou et al. (2010). The lower bound of 1/2 follows from the symmetry of demand distribution,
and
w0 6
Xs0

i¼1

ðDi � lÞ� þ ðDs0 � lÞþ ¼
Xs0�1

i¼1

ðDi � lÞ� þ ðDs0 � lÞþ;
since (Di � l)� = 0 when i = s0. h

We are now ready to present the following result:

Theorem 6. If demands are i.i.d. and symmetric, then response is at least as good as range, that is,
lim
n!1

E½PðS1ðnÞ;D; c1Þ�
E½PðFðnÞ;D; cpÞ�

P lim
n!1

E½PðS2ðnÞ;D; c2Þ�
E½PðFðnÞ;D; cpÞ�
where response is chaining ðS1ðnÞ ¼ CðnÞÞ with secondary cost at c1 = cp while range is full flexibility ðS2ðnÞ ¼ FðnÞÞ with secondary cost at
c2 P 1

2 ðr þ cpÞ.
Proof. Please refer to Appendix B. h
Remark 1. If the response of the high range system improves, that is, c2 ¼ 1
2 ðr þ cpÞ � �, and ACE ¼ 1

2 (e.g. 2-point distribution), then The-
orem 6 no longer holds.
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4.2. Upgrading response and reducing demand variability

The previous section shows the need to improve the response dimension of a system. This means reducing cs to the level of cp. A natural
question to ask is how much benefit does this bring? Using Theorem 3 and results from Chou et al. (2010), we compare the asymptotic
chaining efficiencies for high and low cs for some (discrete and continuous) uniform and normal distributions. It is easy to see that for a
discrete uniform distribution with 2D possible demand values, we have
E½minðY1;Y2Þ� ¼
ðDþ 1Þð2Dþ 1Þ

6D2 � l

E½Y1� ¼
Dþ 1

2D
� l

ACEðcsÞ ¼
E½minðY1; Y2Þ�

2E½Y1�
¼ 2Dþ 1

6D
¼ 1

3
þ 1

6D
for high cs

ACEðcpÞ ¼
7Dþ 2

12Dþ 6
¼ 7

12
� 1

8Dþ 4
when cs ¼ cp

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 þ 3Dþ 1

6D2

s

We tabulate the results for some values of D.
D
 Distribution
 CV
 ACE (cs) for high cs
 ACE (cp)
 Improvement
1
 2-point
 1.00
 0.5000
 0.5000
 0.0000

2
 4-point
 0.79
 0.4167
 0.5333
 0.1166

3
 6-point
 0.72
 0.3889
 0.5476
 0.1587

4
 8-point
 0.68
 0.3750
 0.5556
 0.1806
..

.
 ..
.
 ..

.
 ..
.
 ..

.
 ..
.

1
 continuous
 0.58
 0.3333
 0.5833
 0.2500
Similar results hold for normal distributions. Recall that ACE for low response is independent of CV.
CV
 ACE (cs) for high cs
 ACE (cp)
 Improvement
0.33
 0.2929
 0.7022
 0.4093

0.31
 0.2929
 0.7145
 0.4216

0.29
 0.2929
 0.7275
 0.4346

0.27
 0.2929
 0.7413
 0.4484

0.25
 0.2929
 0.7558
 0.4629

0.23
 0.2929
 0.7708
 0.4779

0.21
 0.2929
 0.7864
 0.4935
These results suggest that upgrading system response brings more benefits as the demand coefficient of variation decreases. Although
upgrading response is important, it becomes even more so if coupled with initiatives to reduce demand uncertainty. This contradicts the
intuition that flexibility becomes less valuable under an environment with less uncertainty.

5. Conclusions

In this paper, we have introduced a new way of studying process flexibility by modeling its response dimension in addition to the tra-
ditional range dimension considered in the literature. We model system response in terms of uniformity of production cost. To this end, we
distinguish between primary and secondary production, where low secondary production cost means high response, while high secondary
cost means low response.

While we have shown that even a system with low range (chaining) and low response (high secondary cost) can already produce non-
negligible returns relative to full flexibility, upgrading either system range or system response (or both) can clearly improve system per-
formance. However, if one faces limited resources and has to choose investment between range flexibility and response flexibility, our re-
sults suggest that a system with high response but limited range performs at least as well as a system with high range but low response.
This implies that one should focus first on upgrading system response and then use residual resources to widen system range.

The model can be enriched by considering endogenized pricing and/or capacity decisions. On the demand side, the distribution can also
be extended to include correlated demands. Furthermore, an interesting direction to look at is the effect of competition (say, in an oligop-
oly) on the behavior of the flexibility-conscious firm. We leave these issues for future research.
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Appendix A. Proof of Theorem 1

Regardless of the value of cs, it is easy to derive the optimal production allocations for both the dedicated and the fully flexible struc-
tures. For the dedicated structure, each facility j can only produce its designated set of primary products {ij/(i) = j}. Because this set does
not overlap with those of other facilities, the optimal allocation is for the facility to produce as many units of these primary products as
possible, such that
X

i:/ðiÞ¼j

x�ij ¼min
X

i:/ðiÞ¼j

Di; Sj

 !
:

For each product that belongs to this set, we can allocate proportionately as follows
x�ij ¼min
X

i:/ðiÞ¼j

Di; Sj

 !
� DiP

i:/ðiÞ¼jDi
6 Di8i : /ðiÞ ¼ j ð10Þ
We repeat this allocation procedure for all other facilities.
For the fully flexible structure, any facility can produce any product. Thus, it is optimal for each facility to produce as many units as

possible of its primary products, and only thereafter, use its extra capacity, if any, to produce the extra demand, if any, of secondary
products
x�ij ¼min
X

i:/ðiÞ¼j

Di; Sj

 !
� DiP

i:/ðiÞ¼jDi
6 Di8i : /ðiÞ ¼ j; 8 j ¼ 1; . . . ;n ð11Þ

Xm

i¼1

X
j–/ðiÞ

x�ij ¼min
Xm

i¼1

Di;
Xn

j¼1

Sj

 !
�
Xn

j¼1

min
X

i:/ðiÞ¼j

Di; Sj

 !
ð12Þ
To show our result, consider cs > c0s. For a fixed structure Gðm;nÞ and a demand realization D, we let Xp ¼
Pm

i¼1xi;/ðiÞ and Xs ¼
Pm

i¼1

P
j–/ðiÞxij be

the optimal primary and secondary production, respectively, when secondary production cost is cs. Similarly, X0p and X0S are the optimal pri-
mary and secondary production when secondary production cost is c0s. From model (1), Eqs. (10)–(12), and the definition of flexibility effi-
ciency, we obtain the following:
FEðGðm;nÞ; csÞ ¼
E ðr � csÞXs � ðr � cpÞ

Pn
j¼1 min

P
i:/ðiÞ¼jDi; Sj

� �
� Xp

� �h i
E ðr � csÞ min

Pm
i¼1Di;

Pn
j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �� �h i

Hence,
FEðGðm;nÞ; csÞ ¼
E Xs � r�cp

r�cs

� � Pn
j¼1 min

P
i:/ðiÞ¼jDi; Sj

� �
� Xp

� �h i
E min

Pm
i¼1Di;

Pn
j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �h i 6 E Xs � r�cp

r�c0s

� � Pn
j¼1 min

P
i:/ðiÞ¼jDi; Sj

� �
� Xp

� �h i
E min

Pm
i¼1Di;

Pn
j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �h i
6

E r � c0s
� �

Xs � ðr � cpÞ
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �
� Xp

� �h i
E r � c0s
� �

min
Pm

i¼1Di;
Pn

j¼1Sj

� �
�
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �h i ¼ FE Gðm;nÞ; c0s
� �
The first inequality is because cs > c0s and Xp is bounded above by
Pn

j¼1 min
P

i:/ðiÞ¼jDi; Sj

� �
. The second inequality results from the feasibility

of (Xp, Xs) to model (1) when secondary cost is c0s.

Appendix B. Proof of Theorem 6

Using Lemma 4, Eq. (10), and c2 P 1
2 ðr þ cpÞ,
lim
n!1

E½PðS2ðnÞ;D; c2Þ�
E½PðFðnÞ;D; cpÞ�

¼ lim
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þ 1
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