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We examine how to design a flexible process structure for a production system to match supply with demand more
effectively. We argue that good flexible process structures are essentially highly connected graphs, and we use the concept
of graph expansion (a measure of graph connectivity) to achieve various insights into this design problem. Whereas existing
literature on process flexibility has focused on the expected performance of process structure, we analyze in this paper the
worst-case performance of the flexible structure design problem under a more general setting, which encompasses a large
class of objective functions. Chou et al. [Chou, M. C., G. Chua, C. P. Teo, H. Zheng. 2010. Design for process flexibility:
Efficiency of the long chain and sparse structure. Oper. Res. 58(1) 43–58] showed the existence of a sparse process structure
that performs nearly as well as the fully flexible system on average, but the approach using random sampling yields few
insights into the nature of the process structure. We show that the ë -expander structure, a variant of the graph expander
structure (a highly connected but sparse graph) often used in communication networks, is within �-optimality of the fully
flexible system for all demand scenarios. Furthermore, the same expander structure works uniformly well for all objective
functions in our class. Based on this insight, we derive design guidelines for general nonsymmetrical systems and develop
a simple and easy-to-implement heuristic to design flexible process structures. Numerical results show that this simple
heuristic performs well for a variety of numerical examples previously studied in the literature and compares favourably
even with the best solutions obtained via extensive simulation and known demand distribution.
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Area of review : Manufacturing, Service, and Supply Chain Operations.
History : Received December 2008; revisions received May 2010, December 2010; accepted December 2010.

1. Introduction
Worldwide economic reforms and globalization have led to
a more complex operational environment for many man-
ufacturers. Increased reliance on make-to-order fulfillment
means that manufacturers can no longer hedge against
demand variability with finished-goods inventory. This calls
for new production strategies that can better cope with
an increasingly volatile environment. Indeed, flexibility,
defined as the ability of a system to respond or react to
a change with little penalty in time, effort, or cost (Upton
1994), is a strategic competitive option that many manufac-
turers are beginning to embrace. In the automobile industry,
for example, companies are moving from focused factories
to flexible factories. The Ford Motor Company, for one,
invested $485 million in two Canadian engine plants to

retool them with a flexible system. It also plans to equip
most of its 30-odd engine and transmission plants all over
the world with flexible systems. Similar initiatives have also
been launched in companies like GM and Nissan. Such ini-
tiatives are viewed as crucial to the survival of automakers
in this increasingly competitive global environment.

The effectiveness of a flexibility strategy of this kind
is highly dependent on two factors: (i) the relationship
between the total invested capacity and the (random) exter-
nal demand, and (ii) the design of the flexible process struc-
ture. The first issue concerns the optimal capacity to invest
in, considering investment cost and demand uncertainty.
The second issue revolves around how the invested capac-
ity should be allocated among different plants, as well as
what types of production capability should be configured
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in each plant. The focus of this paper is on the second
issue.

A plant is considered more flexible if it can use its equip-
ment and resources to produce more product types. How-
ever, how these capabilities are allocated among the plants
can also affect the system’s ability to handle the demand
for the different products. In this setting, the focus is to
design a process structure to handle as much demand as
possible, or to maximize the utilization of the equipment
in the plants.

The earlier studies on process flexibility basically pro-
duced two important insights. First is that if we add more
flexibility to a rigid system in the right places (say, by
allowing a plant to produce one more product type), a sig-
nificant improvement in the system’s performance can be
expected. Some studies (e.g., Jordan and Graves 1995) even
provided examples showing that a very sparse partial flex-
ibility system can be nearly as effective as a full flexibility
system (where all plants can be used to produce all product
types). Second, on where flexibility should be added, these
studies suggested a manner of adding that creates fewer and
longer chains, where a “chain” is a group of products and
plants that are all connected, directly or indirectly, by prod-
uct assignment decisions. Here, a long chain is preferred
because it pools more plants and products and thus deals
with uncertainty more effectively than a short chain. The
effectiveness of the chaining strategy has been validated by
many simulation studies in different areas, ranging from
manpower training to call-center staffing (cf. Jordan and
Graves 1995, Hopp et al. 2004, Iravani et al. 2005).

The chaining concept by Jordan and Graves (1995) is
arguably the most influential strategy used in practice to
design good process structures. However, beyond the long
chain, little is known about the nature of a good structure,
especially for more general cases, such as when not all
products and plants have the same level of mean demand
and capacity. Indeed, when Jordan and Graves (1995) stated
their three design principles, they also mentioned that they
had no firm guidelines for adding flexibility for more gen-
eral cases. That is, these design principles alone do not
provide an implementable heuristic that can be used in all
settings. Our paper tries to address this issue by provid-
ing a simple and implementable heuristic for the general
flexibility design problem.

Our main contribution in this paper is to analyze this
problem from a new perspective. In previous literature, only
the average performance objectives were studied. In this
paper, we analyze the performance of a sparse structure
under the worst-case setting to ensure that our performance
level can always be achieved. In addition, we generalize
the model so that we can also handle objective functions
such as waste minimization, as encountered in other appli-
cation settings. We introduce the concept of graph expan-
sion, which is widely used in the area of graph theory and
computer science, to analyze the performance of the flex-
ible process structure. Under a mild assumption, we show

that the class of graph expanders (highly connected graphs)
works extremely well for a large class of objective func-
tions, despite the fact that it uses a far smaller number of
links compared with the full flexibility system. In fact, for
many classes of demand functions, we can show that the
performance of 2-chain is identical to the performance of
the fully flexible system, by analyzing its expansion prop-
erties. Finally, we use the new insights obtained from our
study on graph expansion to develop new design guide-
lines that lead to a simple and implementable heuristic to
produce a good flexible process structure.

The rest of the paper is organized as follows. In §2, we
review the related literature on process flexibility. In §3,
we present a general framework for the process structure
design problem, encompassing the classical process flexi-
bility model as a special case. We analyze the performance
of the graph expander within our framework when supply
and demand are balanced and identical. In §4, we extend
the result on existence of good sparse structures to nonsym-
metrical systems and introduce the notion of ë -expander.
In §5, we develop new design guidelines and a simple
heuristic to develop good process structures for the gen-
eral case when demand and supply may not be identical
or balanced. In §6, we conduct extensive numerical studies
to illustrate the superior performance of process structures
with good expansion properties, as well as to demonstrate
how to implement our heuristic to construct good flexible
process structures in a nonsymmetrical setting. Finally, we
provide some concluding remarks in §7.

2. Literature Review
Research on issues related to flexibility has a broad scope.
Sethi and Sethi (1990) conducted an extensive survey of the
applications of flexibility in different areas. They catego-
rized 11 types of flexibility, including “machine flexibility,”
“product flexibility,” “routing flexibility,” and “resource
flexibility.” There is by now a vast literature in each cate-
gory. Jack and Raturi (2003) studied the impact of “volume
flexibility” in detail. In addition, Shi and Daniels (2003)
surveyed the literature on “e-business flexibility,” a new
area in flexibility research. They reviewed the process flexi-
bility literature that dealt with e-business issues and defined
the concept of e-business flexibility.

The classic work on process flexibility was conducted
by Jordan and Graves (1995) based on their study of
General Motors’ production process. Because market con-
ditions change quickly, customers’ demand for different
models is very unpredictable. The traditional “one-plant,
one-model” process cannot adequately cope in this environ-
ment—demand for some models cannot be fully satisfied
due to capacity limitations, whereas some plants may have
spare capacity due to insufficient demand. They proposed
changing the traditional focused operation to a more flexi-
ble one, where one plant can produce multiple models. In
this way, the company can use the invested capacity in the
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plants to handle demand variations across models in a more
effective manner.

The ideal design is the full flexibility system, where
every plant is able to produce any product. However, this is
too costly, and each plant needs to have the tooling capa-
bility to produce every model. In their paper, Jordan and
Graves (1995) observed (using simulations) that the partial
flexibility structure, where one plant can produce only a
limited number of models (suitably selected), can accrue
most of the benefits offered by the full flexibility system.
They further proposed a “chaining” strategy as a manage-
rial guideline for the design of a flexibility structure.

Aksin and Karaesmen (2007) applied network theories
to the study of flexible structures. The flexibility of a sys-
tem is determined by the maximum network flow through
customer demand to the manufacturers. They carefully
studied the symmetrical flexible system and derived its
submodularity property. They also derived the concavity of
certain fixed-process structures as a function of the degree
of each production node (the number of models each plant
can handle). Hence, the returns from added flexibility into
the system are diminishing.

Chou et al. (2010) demonstrated this effect more suc-
cinctly by comparing the performance of the chaining struc-
ture with the fully flexible structure for an asymptotically
large system. A k-chain (denoted by Ck) is a subgraph
in an n by n bipartite graph where each supply node i is
linked to demand nodes i1 i+ 11 0 0 0 1 i+ k− 1 (modulo n).
When the demand for each product is uniformly distributed
between 0 and 2C, and each plant has a capacity of C units,
they showed a surprising result that the performance of a
2-chain is already close to 89.6% of that attained by a fully
flexible system when the size of the system is asymptoti-
cally large. The performance in the case of normal distri-
bution is even more impressive. For a normal distribution
N4C1�25 with C = 3� , the performance of a 2-chain goes
up to an impressive level of 96%.

Many subsequent works extended the chaining strat-
egy and partial flexibility concept and provided important
observations and insights in various areas such as the sup-
ply chain (cf. Graves and Tomlin 2003, Bish et al. 2005),
flexible workforce scheduling (cf. de Farias and Van Roy
2004, Hopp et al. 2004), and queuing (cf. Benjafaar 2002,
Gurumurthi and Benjaafar 2004). For example, Graves and
Tomlin (2003) extended Jordan and Graves (1995) to obtain
flexibility guidelines for multistage supply chains. On the
other hand, Bish et al. (2005) cautioned that certain prac-
tices that might seem reasonable in a flexible system would
lead to greater swings in production, resulting in higher
operational costs, and might reduce profits.

Iravani et al. (2005) proposed a new perspective on
process flexibility. They used the concept of “structural
flexibility” to evaluate a system’s process capability. They
created an n by n “structural flexibility matrix” (SF Matrix)
to study the flexibility of a cross-training CONWIP (CON-
stant Work-In-Process) system. They used the mean of all

the elements in the SF Matrix and the dominant eigen-
value as indices of flexibility. Their research set a milestone
in developing a measure for process flexibility because it
allows managers to compare the performance of differ-
ent process structures quickly with minimal information.
Although it cannot give an absolute performance value,
their paper complements ours, which provides easy-to-
implement methods for constructing good process flexibil-
ity structures.

Note that the system studied in our paper also belongs
to a class of networks referred to as newsvendor net-
works that were introduced by Van Mieghem and Rudi
(2002). Recently, Bassamboo et al. (2010) study the capac-
ity and flexibility selection problem for a newsvendor net-
work and show that the optimal configuration might go
beyond chaining.

3. The Process Flexibility Problem
We use a bipartite graph to represent flexibility structures.
On the left is a set A of n product nodes, whereas on the
right is a set B of m facility/plant nodes. A link connect-
ing product node i to facility node j means that facility j
has the capability to produce product i. Let F ⊆ A× B =

84i1 j52 i ∈ A1 j ∈ B9 denote the set of all such links; that
is, the edge set of the bipartite graph. Hence, each flexibil-
ity configuration can be uniquely represented by a bipartite
graph F.

Let D̃i denote the demand for product i and D̃ =

4D̃11 0 0 0 1 D̃n5 denote the demand vector for all the prod-
ucts. Let xi1 j denote the amount of demand for product i
assigned to plant j and x denote the matrix of xi1 j , that is,

x= 4xi1 j51 for all i ∈A1 j ∈B0

Let

ZF4D̃5
4

= max
x∈ìF

{

∑

j∈B

Uj

(

∑

i∈A

xi1 j

)}

1 (1)

where

ìF =

{

x2
∑

j2 4i1 j5∈F

xi1 j = D̃i for all i ∈A1 xi1 j ¾ 0

for all 4i1 j5 ∈F1 xi1 j = 0 for all 4i1 j5yF

}

0

Note that for any given flexibility structure F and realized
demand D̃, ìF represents the set of all the assignments x
that need to be considered to maximize

∑

j∈BUj4
∑

i∈A xi1 j5
in (1), as explained in the following. In our model,

∑

i∈A xi1 j
denotes the amount of demand assigned to plant j , and
Uj4

∑

i∈A xi1 j5 denotes the utility level gained by plant j
from the assignment. We assume that Uj4 · 5 is a nonde-
creasing concave utility function, but is linear in the inter-
val 601Cj 7 with Uj405= 0, where Cj corresponds to the
preconfigured capacity at plant j . We are thus implicitly
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assuming that the preconfigured capacity of the plants can-
not be changed readily (as capacity investment is a long-
term strategic decision), but can be redeployed to meet the
demand of designated products as and when needed. In
addition, a nondecreasing concave utility function implies
that each plant can deploy capacity beyond its precon-
figured capacity from an emergency backup option with
penalty to gain additional (nonnegative) utility for each unit
of demand it fulfills using the emergency backup option.
Because this additional utility is nonnegative for each plant,
to maximize

∑

j∈BUj4
∑

i∈A xi1 j5 in (1), we should always
assign all demands for production because we can never
be worse off by assigning an additional unit of demand
to a plant. Therefore, for any given flexibility structure
F and realized demand D̃, we only consider assignments
x that assign all demands for production to maximize
∑

j∈BUj4
∑

i∈A xi1 j5 in (1). In other words, we only consider
x such that for all i ∈ A,

∑

j2 4i1 j5∈F xi1 j = D̃i. Because we
cannot assign demand for product i to plant j unless 4i1 j5 ∈

F, the set of all the assignments x we need to consider
to maximize

∑

j∈BUj4
∑

i∈A xi1 j5 in (1) can be described
as ìF.

Note that we assume that Uj4x5 is concave for utiliza-
tion level beyond Cj to model the penalty associated with
production beyond the preconfigured production capacity.
Examples of such utility functions include:

• U4x5 = min4x1�5. Here, the plant does not gain any
additional utility for production beyond �. This models the
situation when there is no emergency backup option, so
that all demand beyond � will be lost.

• U4x5 = min4x1p + 4� − p5x/�5. Here, the plant
loses a profit margin of p/� for each unit of production
beyond �.

Note that the value ZF4D̃5 depends on demand sce-
nario D̃ and process structure F. Clearly, when F con-
tains all the edges in the set E 4

= 84i1 j52 i ∈ A1 j ∈ B91
there is no restriction on which plant the demand may be
assigned to, and hence the gain in utility values will be
maximal. We call E the fully flexible system.

3.1. Identical and Balanced Case

In this section, we assume that �A� = �B� = n and
U4x5=Uj4x5 for all j . It follows directly from the concav-
ity of the objective function that

ZE4D̃5= n

[

U

(∑

i∈A D̃i

n

)]

0 (2)

Therefore, the best strategy for E is to equalize the produc-
tion assigned to each plant.

When U4x5 = min4x1�5, where � = E4D̃i5, our prob-
lem reduces to the classical plant-product process design
problem. A structure such as a 2-chain (denoted by C2)
is known to work extremely well for this case.1 In fact,
asymptotically it can be shown (cf. Chou et al. 2010) that

E

(

ZC2
4D̃5

n

)

≈ 0096 ×E

(

ZE4D̃5
n

)

for large n

when Dis are independent normal random variables with
mean �, standard deviation � =�/3, truncated in the range
6012�7. This surprising feature is desirable because C2 uses
a much smaller number of arcs compared to E.

Our objective is to find a set F that is sparse relative to
E, that is,

lim
n→�

�F�

�E�
= 01

but which will be able to support a production flow with
a utility level as close to that of E as possible, for all
demand scenarios D̃. To achieve this objective, we need to
find a process structure F that not only has very few edges,
but has very high “connectivity” so that capacities can be
channeled via the edges to fulfill the demands, which are
uncertain. Here, “connectivity” means the capability of the
process structure to “connect” or “link” the supply side
with the demand side, thus channeling the capacities to the
realized demands. However, because the realized demands
are uncertain, to be able to channel the capacities to the
realized demands, the edges needed may be different for
different demand realizations. Thus, intuitively, to ensure
higher connectivity, more edges are needed. Although this
intuition in a way is true, it does not tell the whole story.
In particular, two graphs with the same number of edges
may have different levels of connectivity depending on how
the edges are assigned to connect their supply and demand
nodes. For example, as pointed out in Jordan and Graves
(1995, p. 582), a structure with one long chain has better
sales and capacity utilization performance than the struc-
ture with five short chains even though both structures have
the same number of edges. The underlying reason is that
the structure with one long chain has better capability in
responding to unforeseen changes in demand by channeling
capacities to the realized demands via the edges assigned
between products and plants. Similarly, later in §6, Fig-
ure 1 also shows two structures that have the same number
of edges but display different levels of connectivity. There-
fore, it is important to assign the edges properly to achieve
higher connectivity with the same number of edges. In this
regard, it is worth noting that there is a class of highly con-
nected graphs, called expander, which has received a lot of
attention in the literature. Basically, expanders are graphs
where every “small” subset of nodes is linked to a large
neighborhood, thus allowing effective allocation of capac-
ities to the demands. In this paper, we will use this good
property of graph expanders to show how to find a set F
that is sparse relative to E, but which will be able to sup-
port a production flow with a utility level as close to that
of E as possible, for all demand scenarios D̃.

Instead of studying the average performance, we aim
to find a sparse structure that performs well even under
the worst-case demand scenario. We say that F is within
�-optimality of E if

ZF4D̃5¾ 41 − �5ZE4D̃5 for all demand scenarios D̃0
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We next develop a general framework for the pro-
cess flexibility design problem, assuming that supply and
demand are identical; that is, we assume that the demand D̃i

for product i is identically distributed with mean �, and that
the capacity of each plant is preconfigured at constant �.

The performance of the process structure depends
strongly on demand variability. To the best of our knowl-
edge, there are very few studies that take into account
the impact of the variance and correlational structure of
the uncertain parameters. If the variance can be arbitrarily
large, then it is conceivable that a sparse process flexibil-
ity structure may be much less effective than a fully flex-
ible structure, as demonstrated by the following example
adopted from Chou et al. (2010).

Example 1. Consider a system with n unit capacity nodes
and n demand nodes, where D̃j = n with probability 1/n
and D̃j = 0 with probability 1 − 1/n, for j = 1121 0 0 0 1 n.
Furthermore, the demands are correlated in such a way that
∑n

j=1 D̃j = n for all realizations; in other words, exactly one
demand node has a value of n and all other n− 1 demand
nodes have a value of 0. Assume U4x5 = min4x115. For
any given D̃, it is easy to see that in the fully flexible sys-
tem, ZE4D̃5= n. On the other hand, in any partially flexible
system F with a degree of flexibility bounded by some
fixed k (i.e., each demand node has at most k neighbors),
ZF4D̃5 is at most k, which is much smaller than ZE4D̃5 for
a sparse process flexibility structure.

To rule out such extreme cases, in the rest of the
paper we assume that the demand satisfies the condition of
bounded variation, defined as follows.

Definition 1. D̃i has a bounded variation of � if D̃i ¶
�E6D̃i7 for some constant � almost surely.

It turns out that when demand has a bounded variation,
we can prove that, for any given � > 0 and sufficiently
large n, there is a process structure F, using only a sparse
number of edges, with

ZF4D̃5¾ 41 − �5ZE4D̃5

for all D̃ satisfying the bounded variation condition. Intu-
itively, the near-optimal process structure F identified in
this paper has very few edges, but has very high connec-
tivity with many paths2 linking different pairs of nodes in
A ∪B, thus allows us to effectively allocate capacities to
the demands. To gain this intuition, we need to understand
the notion of graph connectivity associated with every pro-
cess structure.

Definition 2. Two (or more) paths are node disjoint if
they have no common intermediate nodes. A structure F
is k-connected if there are at least k node disjoint paths
linking every pair of nodes in A∪B.

There is a clear relationship between the level of connec-
tivity and the number of edges—for higher graph connec-
tivity, the structure needs to have more edges. A k-chain
denoted by Ck is clearly k-connected with kn edges. How-
ever, although C2 is the only 2-connected graph with 2n
edges, there are exponentially many classes of k-connected
graphs with kn edges, for k > 2. In particular, there
is a class of highly connected graphs, called the graph
expander. The “expander” concept was first introduced by
Bassalygo and Pinsker (1973) in a study of communica-
tion networks. Basically, graph expanders are graphs where
every “small” subset of nodes is linked to a large neigh-
borhood, thus allowing effective allocation of capacities to
the demands. The ratio of the size of the neighborhood to
the size of the subset measures the expansion capability of
the graph. We define the neighborhood of a subset and the
“graph expander” concept formally in the following:

Definition 3. Let F be a bipartite graph with partite sets
A and B. For S ⊆ A, the neighborhood of S in F is
defined as

âF4S5
4

= 8j ∈B2 4i1 j5 ∈F for some i ∈ S90

For simplicity of notation, we drop F and denote the neigh-
borhood of S as â4S5 when there is no ambiguity about
which F is being considered.

Definition 4. Let F be a bipartite graph with partite sets
A and B. The structure F is an 4�1�1ã5-expander if

• for every v ∈ A, deg(v)¶ ã, where deg(v) is the car-
dinality of the set âF48v95, and

• for all small subsets S ⊂A with �S�¶ �n, we have

�â4S5�¾ ��S�0

Remarks: 1. For an n × n bipartite graph that is also an
4�1�1ã5-expander, the number of edges is at most ãn.

2. A 2-chain C2 is clearly a 41/n12125-expander,
because for each subset of size 1, there are at least two
neighbors. Furthermore, the degree is bounded by 2. It is
also a 42/n1105125-expander, because for every subset S of
size at most 2, �â4S5�¾ 105�S�. It is easy to check that it is
simultaneously a 4k/n1 4k + 15/k125-expander for all k ¶
n−1. Similarly, other graphs can be viewed as an expander
with a variety of values for the triplet 4�1�1ã5. However,
we must pay attention to the values � and � in the triplet
to understand how well a graph can respond to unforeseen
demand changes. In particular, � determines the largest
number of nodes to be pooled together that we are inter-
ested in, and � guarantees the minimum expansion capa-
bility of any pooled set of nodes specified by the value �.
Therefore, depending on how many nodes we expect that
the system is able to and needs to pool due to demand
uncertainties, we can set � accordingly to control the size
of the pooled nodes and study the corresponding � value
to understand the expansion capability of the structure.
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3. A graph expander ensures that any suitably small
group of product nodes is connected to a relatively large
number of plants; thus, it works well in matching supply
and demand, as we will show in Theorem 1. Moreover, the
notion that a long chain is better than a short chain can be
cast in the same light: the expansion ratios for “small” sub-
sets of product nodes in long chains are higher than those
in short chains.

Theorem 1. Consider an n× n system where the demand
D̃i has a bounded variation of � with mean �i =�. Assume
that each plant has a capacity of �, and U4 · 5 is a non-
decreasing concave utility function with U4x5 = Kx in
the interval 601�7, where K is a constant. Let F be an
4�1�1ã5-expander, with �×�= 1−� for some � > 0. Then

ZF4D̃5¾ ��n

[

U

(∑

i∈A D̃i

n

)]

= 41 − �5ZE4D̃5

for all D̃.

Proof. We start the proof with a roadmap outlining the
key steps:

1. We use KKT conditions to characterize x∗
i1 j for all

edge 4i1 j5, the optimal flows between the plant and the
product nodes and U ′4

∑

l2 l∈A x
∗
l1 j5, for all plant j ∈ B, the

marginal utility for each plant node j . Using these charac-
teristics, we can partition the plant nodes into groups while
those plant nodes in the same group have the same marginal
utility. We can then rank the groups in increasing order of
its marginal utility.

2. We focus on the group with the smallest marginal
utility, that is, group B∩S1. We note that the utility of a
plant node in this group is an upper bound of the utility of
any plant.

3. We focus on the group of product nodes that has B∩

S1 as its neighbor and refer to this group as T. That is,
â4T5=B∩S1. We consider two cases: �T�¶ �n in case
(a) and �T�¾ �n in case (b).

4. In both cases, we use the expander property and
the fact that the utility of a plant node in â4T5 is
an upper bound of the utility of any plant to prove
that either ZF4D̃5 = ZE4D̃5 (in case (a)) or ZF4D̃5 ¾
��n6U44

∑

i∈A D̃i5/n57= 41 − �5ZE4D̃5 (in case (b)).
The details of the proof are in the following.

Consider the ZF4D̃5, with any given D̃ = 4D̃11 0 0 0 1 D̃n5.
From the KKT conditions, there exists a set of Lagrange
multipliers u∗

i 1 v
∗
i1 j such that the optimal solution x∗

i1 j satis-
fies the following conditions:

U ′

(

∑

l∈A

x∗

l1 j

)

− u∗

i + v∗

i1 j = 0 ∀ 4i1 j5 ∈F (3)

∑

j2 4i1 j5∈F

x∗

i1 j = D̃i ∀ i ∈ 81121 0 0 0 1 n9 (4)

x∗

i1 j × v∗

i1 j = 0 ∀ 4i1 j5 ∈F (5)

v∗

i1 j1 x
∗

i1 j ¾ 0 ∀ 4i1 j5 ∈F0 (6)

Let S4D̃5 denote the support for x∗ = 4x∗
i1 j5; that is,

S4D̃5 4

= 84i1 j52 x∗

i1 j > 090

Note that S4D̃5⊆F.
Suppose S4D̃5 can be written as a union of connected

components Sk , k = 11 0 0 0 1 h. For each pair of nodes j and
l in B, connected to a node p in A in the graph induced
by Sk (i.e., x∗

p1 j > 01 x∗
p1 l > 0), the KKT conditions (3) and

(5) ensure that

U ′

(

∑

i2 i∈A

x∗

i1 j

)

=U ′

(

∑

i2 i∈A

x∗

i1 l

)

= u∗

p1

because v∗
p1 l = v∗

p1 j = 0 by (5). Because the graph Sk is
connected,

U ′

(

∑

i2 i∈A

x∗

i1 j

)

=U ′

(

∑

i2 i∈A

x∗

i1 l

)

for all j1 l in B∩Sk. Let �k denote this common value. We
can thus assume WLOG that �1 < �2 < · · · < �h, because
we can otherwise combine components with identical �k

together. Let

�k
4

= min8x2 U ′4x5= �k90 (7)

From the definition of �k, we can easily see that
∑

i∈A

x∗

i1 j ¾ �k1 ∀ j ∈B∩Sk0 (8)

In the structure F, we note that

â4A∩S15⊆B∩S10 (9)

This is because if (9) does not hold, then there exists an
edge 4i1 j5 ∈ F with i ∈ A ∩ S1, but j y B ∩ S1, which
implies that either

• j ∈B∩Sk for some k > 1, or
• j has a flow of zero; that is, x∗

i1 j = 0 for all i ∈A.
However, in the first case, the KKT condition (3) ensures
that

U ′

(

∑

l∈A

x∗

l1 j

)

− u∗

i ¶ 03

that is, �k ¶ u∗
i . However, note that u∗

i = �1 because i ∈

A ∩ S1. Therefore, �k ¶ �1, which is a contradiction. In
the second case, plant j is not utilized at all. Because U4 · 5
is a concave function, we can always reallocate one unit of
the demand for i to plant j without decreasing the value of
ZF4D̃5. Therefore, WLOG, we can exclude the possibility
of the second case. From the above arguments, we know
that (9) must hold.

Let T = A ∩ S10 Because â4T5 ⊆ B ∩ S1, and every
node in B∩S1 is connected to some node in A∩S1, we
have

â4T5=B∩S10 (10)

We consider two cases—(a) and (b).
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Case (a): If �T� ¶ �n, then by the expander property,
�â4T5�¾ ��T�. Combined with (8), (10), and the bounded
variation assumption, we must have

��T��1 ¶
∑

j∈â4T5

(

∑

i∈A

x∗

i1 j

)

=
∑

i∈T

D̃i ¶ ���T�0

Therefore, �1 ¶�0 Let

Ak
4

=A∩Sk1 Bk
4

=B∩Sk1 k = 1121 0 0 0 1 h0

We consider the following three cases to show that for all
j ∈B,

U

(

∑

i∈A

x∗

i1 j

)

=K
∑

i∈A

x∗

i1 j 0 (11)

—(i): If j ∈ B1, then from (7) and the definition of �k

and U4 · 5, it is easy to see that

U ′

(

∑

i∈A

x∗

i1 j

)

= �1 =U ′4�15=K1

because �1 ¶�. Therefore, (11) holds.
—(ii): If j ∈B2 ∪B3 ∪ · · · ∪Bh, then because U ′4 · 5 is

monotonically decreasing and �k > �1 for k = 2131 0 0 0 1 h,
we have

∑

i∈A x
∗
i1 j <�1. Because �1 ¶�, it is obvious that

(11) holds for this case.
—(iii): If j ∈B, but j yB1 ∪B2 ∪ · · · ∪Bh, then j has

a flow of zero; that is,
∑

i∈A x
∗
i1 j = 0. Therefore, from the

definition of U4 · 5 it is clear that (11) holds for this case
too.
Because (11) holds for all j ∈ B, from the definition of
U4 · 5, it is easy to see that

U

(

∑

j∈B

∑

i∈A x
∗
i1 j

n

)

=
K
∑

j∈B

∑

i∈A x
∗
i1 j

n
0

Hence

∑

j∈B

U

(

∑

i∈A

x∗

i1 j

)

=
∑

j∈B

(

K
∑

i∈A

x∗

i1 j

)

=K
∑

j∈B

∑

i∈A

x∗

i1 j

= nU

(

∑

j∈B

∑

i∈A x
∗
i1 j

n

)

= nU

(∑

i∈A D̃i

n

)

0

Thus, ZF4D̃5=ZE4D̃5 in this case.
Case (b): If �T� ¾ �n, then �â4T5� is at least ��n =

41 − �5n. Note that

∑

i∈A

x∗

i1 j ¾
∑

i∈A

x∗

i1 k1 for all j ∈ â4T51 k y â4T50

Hence,
∑

j∈â4T5

∑

i∈A x
∗
i1 j

�â4T5�
¾
∑

j∈B

∑

i∈A x
∗
i1 j

n
0 (12)

Because U ′4
∑

i∈A x
∗
i1 j5 is a constant for all j ∈ â4T5, there-

fore, all the
∑

i∈A x
∗
i1 j with j ∈ â4T5 either lie in a region

where the function U4 · 5 is linear or lie at the same point.
Combined with (12), we have

∑

j∈â4T5

U

(

∑

i∈A

x∗

i1 j

)

= �â4T5�U

(

∑

j∈â4T5

∑

i∈A x
∗
i1 j

�â4T5�

)

¾ �â4T5�U

(∑

i∈A D̃i

n

)

3

therefore,

ZF4D̃5¾ ��n

[

U

(∑

i∈A D̃i

n

)]

= 41 − �5ZE4D̃50

We have thus obtained a proof for Theorem 1. �

Note that the �-optimality performance holds for all
demand scenarios D̃, and is thus the worst-case perfor-
mance of the expander structure, given that the demand
has a bounded variation of �. This result is considerably
stronger than the average case performance of the chaining
structure. Because 2-chain C2 in an n×n bipartite graph is
a 44n−15/n1n/4n−15125-expander, we have the following
immediate corollary:

Corollary 1. Suppose that (i) D̃i, the demand for each
product i, has a bounded variation of 1 + 1/4n − 15 and
has a mean �i = �, i = 11 0 0 0 1 n, and (ii) each of the n
plants has a capacity �. Then

ZC2
4D̃5=ZE4D̃5

for all D̃.

We notice that truncated normal distribution is often
used to model product demand distribution in various ser-
vice and manufacturing settings. According to Corollary 1,
when � = �/3 and demand is truncated at one standard
deviation above the mean, a 2-chain is always as good as
the fully flexible system as long as n¶ 4. However, when
n¾ 4, we note that C2 is a 43/n14/3125-expander, and thus
its performance is 4/n factor of the fully flexible system
in the worst case. However, this implies that the worst-case
performance of a 2-chain is worse off compared to the fully
flexible system when n increases. Therefore, for large n, we
need to find a different class of graph expander structures
to design a good process structure.

From Theorem 1, we know that an expander with � such
that ��= 1−� has an �-optimality performance. However,
how many edges do we need to achieve such a perfor-
mance? In other words, how big does the degree ã need
to be for the expander to be �-optimal? We know that if ã
is as big as n, we may even have a fully flexible system.
However, when n is large and ã is much smaller than n,
does there still exist such an expander with the specified �
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value? That is, does there always exist an �-optimal struc-
ture with a much smaller number of edges than the num-
ber of edges in the fully flexible system? The answer is
yes. In fact, the existence of such an expander was already
proved in previous literature on graph theory, as quoted in
Theorem 2.

Theorem 2 (Asratian et al. 1998). For any n1� ¾ 1,
and �< 1 with ��< 1, there exists an 4�1�1ã5-expander
for any

ã¾ 1 + log2 �+ 4�+ 15 log2 e

− log24��5
+�+ 10 (13)

Note that the lower bound on the degree ã is independent
of n and recall that the number of edges in the expander
graph is at most ãn. Hence, the number of edges in this
class of graph expanders is linear in n. The implication
for the process flexibility problem can be stated more suc-
cinctly as follows:

In the symmetrical system, for any given demand distri-
bution with a bounded variation of �, we can find a cor-
responding � with �� = 1 − �, for any given � > 01 such
that for n sufficiently large, we can always find a process
structure using at most ãn edges, where ã is given by the
right-hand side of (13), such that the worst-case perfor-
mance of the structure is at most 1 − � times of the fully
flexible system.

We postpone the proof of Theorem 2 to the next section,
where we derive a more general existence result for the
nonsymmetrical system using the probabilistic argument
adopted from Asratian et al. (1998). Although the exis-
tence of graph expanders can be established easily using
the probabilistic method, the explicit construction of graph
expanders proved to be much more difficult and requires
a large number of sophisticated tools from number the-
ory and graph theory. Reingold et al. (2002) used combi-
natorial graph product operation (zigzag product) to pro-
duce a large graph with near-optimal expansion properties.
We refer readers to the numerous surveys and articles for
details on this subject (cf. Sarnak 2004 and the references
therein).

We now consider the case when K = 1 in the definition
of U4x5 and define V 4x5 = x −U4x5. Then V 4x5 = 0 for
x ¶ �, and V 4x5 is a nondecreasing convex function. We
can define the following related problem:

Z′

F4D̃5
4

= min
x∈ìF

{

∑

j∈B

V

(

∑

i∈A

xi1 j

)}

1

where again

ìF =

{

x2
∑

j2 4i1 j5∈F

xi1 j = D̃i for all i ∈A1 xi1 j ¾ 0

for all 4i1 j5 ∈F1 xi1 j = 0 for all 4i1 j5yF

}

0

In this case, our focus is on the excess demand assigned
to a plant, and the penalty is increasing convex as the
amount assigned moves further above �. Interestingly,
because ZF4D̃5 and Z′

F4D̃5 have the same feasible region,
and V 4x5 + U4x5 = x for any x, we have the following
result:

ZF4D̃5+Z′

F4D̃5=
∑

i

D̃i0

Hence, using Theorem 1, we have an analogous theorem
for this class of problem:

Theorem 3. Let F be an 4�1�1ã5-expander. When D̃i has
a bounded variation of � with mean �i =�, we have

Z′

F4D̃5¶ ��Z′

E4D̃5+ 41 −��5
∑

i

D̃i

for all D̃. This implies that

E4Z′

F5¶ ��E4Z′

E5+ 41 −��5n�0

4. Extension: Nonsymmetrical System
In this section, we analyze the process flexibility problem
in a more general setting where demand and capacity levels
are no longer identical and balanced. That is, we allow the
number of product nodes and plant nodes to be different
and the products to follow different demand distributions.
We also allow the plants to have different capacities. To be
more specific, we assume the following:

• �A� = n and �B� = m, where n does not have to be
equal to m.

• For all i ∈ A, E4D̃i5 = �i and �L
i �i ¶ D̃i ¶ �U

i �i

almost surely, where 0 ¶ �L
i ¶ 1 ¶ �U

i . We say that demand
D̃i has bounded variation with �L

i and �U
i in this case.

• For all j ∈B, its preconfigured production capacity is
Cj , and the utility function for plant j is a concave non-
decreasing function Uj4x5, with Uj4x5 = Kx for all x in
601Cj 7, and U ′

j 4x5 <K when x >Cj , to model the penalty
associated with production beyond its preconfigured pro-
duction capacity Cj .

Recall from (1) that our general objective is

ZF4D̃5
4

= max
x∈ìF

{

∑

j∈B

Uj

(

∑

i∈A

xi1 j

)}

1

where

ìF =

{

x2
∑

j2 4i1 j5∈F

xi1 j = D̃i for all i ∈A1 xi1 j ¾ 0

for all 4i1 j5 ∈F1 xi1 j = 0 for all 4i1 j5yF

}

0

To analyze the process flexibility problem where demand
and capacity levels are no longer identical and balanced,
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we define “ë -expander” as the following:

Definition 5. Given ë , where 0 <ë ¶ 1, a ë -expander
in the process flexibility problem is a bipartite graph in
A×B with
∑

j∈â4S5

Cj ¾ min
{

∑

i∈S

�U
i �i1ë

∑

j∈B

Cj −
∑

iyS

�L
i �i

}

1

for all subsets S ⊆A.

Given a ë -expander, we note that for any subset S ⊆A,
there are two cases:

• Case (i):
∑

i∈S �
U
i �i ¶ë

∑

j∈BCj −
∑

iyS �
L
i �i0

• Case (ii):
∑

i∈S �
U
i �i >ë

∑

j∈BCj −
∑

iyS �
L
i �i0

In Case (i), it is easy to see from Definition 5 that
∑

j∈â4S5

Cj ¾
∑

i∈S

�U
i �i1

and hence the plants supplying to such a subset S ⊆A have
sufficient capacity to deal with the demand arising from S.

In Case (ii), we see from Definition 5 that
∑

j∈â4S5

Cj ¾ë
∑

j∈B

Cj −
∑

iyS

�L
i �i1

which implies that the capacity connected to such a subset
S is also large enough so that at least ë proportion of the
total capacity is utilized in the worst case.

For ease of reference, we define small subset as the
following:

Definition 6. Given a ë -expander, we refer to a subset
S ⊆A as a small subset if
∑

i∈S

�U
i �i ¶ë

∑

j∈B

Cj −
∑

iyS

�L
i �i0

For any S ⊆A that is not a small subset, we call it a non-
small subset.

Combining Case (i) and (ii), we see that the definition
of ë -expander partitions the subsets of A into two groups,
small and nonsmall subsets: (i) For a small subset S, the
plants supplying to it have sufficient capacity to deal with
the demand arising from it. (ii) At the same time, the capac-
ity connected to a nonsmall subset is also large enough so
that at least ë proportion of the total capacity is utilized in
the worst case. It is thus easy to see that a structure with
ë = 1 is as good as full flexibility, and the larger ë is, the
more flexible is a structure.

We can adapt the arguments in §3 to prove the following:

Theorem 4. Let F be a ë -expander. When D̃i has
bounded variation with �L

i and �U
i for all i, then for any

demand realization D̃, we can find a solution for ZF4D̃5
such that either (a) all the plants are operating below
their preconfigured capacity level (because of insufficient
demand), that is, there is no performance degradation
because all the demands are fulfilled in a way that gen-
erates the highest-possible utility level, or (b) at least ë
proportion of the total preconfigured capacity has been
utilized.

Proof. The detailed proof can be found in the electronic
companion, which is available as part of the online version
that can be found at http://or.journal.informs.org/. �

If we normalize for the demand, Theorem 4 states that
a ë -expander has the following nice property—as long as
the demand for each product falls in the range �L

i �i and
�U
i �i, then the process structure guarantees a utilization

rate of 100 ×ë% in the entire system!

Example 2. Consider a setting with 5 plants and 5 prod-
ucts. Capacity at each plant is 100 units, whereas the
demand for the 5 products are between 50 and 150, each
with mean of 100. Note that we did not specify the pre-
cise structure of the demand distributions. A fully flexible
system in this case contains 25 edges, whereas a 2-chain
has only 10 edges. Note that the demand is always within
1.5 times of its mean. Hence, the 2-chain has bounded
variation with �L

i = 005, and �U
i = 105. Using Definition 5

and considering subsets S ⊆ A with all possible cardi-
nalities (from 0 to 5), we can show that the 2-chain is
a 1-expander. Indeed, for any S with �S� = 0, �â4S5� =

0, and thus
∑

j∈â4S5Cj = 0 ¾ ∑

i∈S �
U
i �i = 0. For any S

with �S� = 1, �â4S5� = 2, and thus
∑

j∈â4S5Cj = 200 ¾
∑

i∈S �
U
i �i = 150. For any S with �S� = 2, �â4S5� ¾ 3

and thus
∑

j∈â4S5Cj ¾ 300 ¾ ∑

i∈S �
U
i �i = 300. For any

S with �S� = 3, �â4S5�¾ 4, and thus
∑

j∈â4S5Cj ¾ 400 ¾
ë
∑

j∈BCj −
∑

iyS �
L
i �i = 1 ∗ 500 − 2 ∗ 50 = 400. For any

S with �S� = 4, �â4S5� = 5, and thus
∑

j∈â4S5Cj = 500 ¾
ë
∑

j∈BCj −
∑

iyS �
L
i �i = 1 ∗ 500 − 1 ∗ 50 = 450. For any

S with �S� = 5, �â4S5� = 5, and thus
∑

j∈â4S5Cj = 500 ¾
ë
∑

j∈BCj −
∑

iyS �
L
i �i = 1 ∗ 500 − 0 ∗ 50 = 500. Thus,

the 2-chain structure in this case is a 1-expander and has
the same performance as the fully flexible system for all
demand realizations!

In the rest of this section, we demonstrate that a sparse
ë -expander exists for any ë < 1, provided n is sufficiently
large and E4Di5 = �i = O415 for each i, i.e., no single
product dominates the production requirement of the sys-
tem. Note that otherwise our design problem is actually
easier, because considerably more capacities will be com-
mitted to support the production needs of the single prod-
uct. WLOG, we can assume �L

i = 0 and �U
i = �, because

we can always precommit the capacity to produce up to the
minimum level of demand for each product, thus reducing
�L
i to 0. We assume that �A� = n and �B� =m, where n does

not have to be equal to m. We also assume that
∑

j Cj ¾
∑

i�i and that Cj1�i are positive integers for all i1 j .

Theorem 5. For any ë < 1, let �=ë/�. Choose

ã¾ 1 + log2 �+ 4�+ 15 log2 e

− log24��5
+�+ 10 (14)

There exists a sparse ë -expander structure F, with degree
O4ã�i5=O415 at demand node i, such that
∑

j∈âF4S5

Cj ¾ �
∑

i∈S

�i1
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for all subsets S ⊆A with
∑

i∈S

�i ¶ �
∑

j

Cj 0

Proof. Consider the following probabilistic method to
generate a flexibility structure: For each node i in A, pick
ã�i neighbors in B randomly, with each element j sampled
with probability proportional to Cj . For each set U with
∑

i∈U �i = z ¶ �
∑

j Cj , the probability that all neighbors
are contained in a set V with

∑

j∈V Cj = �z is given by

∏

i∈U

(

�z/
∑

j

Cj

)ã�i

=

(

�z/
∑

j

Cj

)zã

0

There are at most
(

∑

i �i

z

)

and
(

∑

j Cj

�z

)

ways to choose U and
V , respectively. Hence, the probability that there exist such
sets U and V is at most

gz =





∑

i

�i

z









∑

j

Cj

�z





(

�z

/

∑

j

Cj

)zã

¶





∑

j

Cj

z









∑

j

Cj

�z





(

�z

/

∑

j

Cj

)zã

¶
(

e
∑

j Cj

z

)z(e
∑

j Cj

�z

)�z(

�z

/

∑

j

Cj

)zã

1

using the inequality
(

n

k

)

¶ 4ne/k5k0 Rearranging the terms,
and using the fact that z¶ �

∑

j Cj , we have

gz ¶
[(

∑

j

Cj

)1+�−ã

e1+��ã−�zã−�−1

]z

¶ 6e1+��4��5ã−�−17z0

By picking ã at least as large as the lower bound as shown
in the theorem, we can ensure that gz ¶ 41/25z. Note that
�� < 1 is crucial for this to hold. Hence, the probability
that there exists some set U with

∑

i∈U �i = z ¶ �
∑

j Cj ,

violating our condition, is at most
∑�

∑

j Cj

z=1 gz < 10 This
proves the existence of a sparse ë -expander. �

5. Design Guidelines and Heuristics
We have studied the connection between worst-case perfor-
mance of a process structure and graph expansion, and the
existence of a sparse structure that possesses high expan-
sion. We now use these insights to derive guidelines to
design a sparse process structure given any general non-
symmetrical system. To our best knowledge, this algo-
rithmic design problem has been largely overlooked, in
part because of the technical difficulties associated with it.
The only other work that attempts to tackle this issue is
Jordan and Graves (1995), who provide the following three
guidelines.

• Try to equalize the total capacity to which each prod-
uct is directly connected.

• Try to equalize the total expected demand to which
each plant is directly connected.

• Try to create a circuit visiting as many nodes as
possible.

Although applying these guidelines to the symmetrical
case will generate regular chains (e.g., 2-chain, 3-chain,
etc., depending on the budget for adding flexibility), these
guidelines alone do not provide an implementable heuristic
for the general nonsymmetrical setting. In their 16-product,
8-plant automobile production example, Jordan and Graves
(1995) added six new production links to the existing con-
figuration, based on the above principles and by connect-
ing products with high expected lost sales to plants with
high expected excess capacity. However, to reproduce their
structure is not easy, because no algorithm was provided on
how to apply the guidelines. Moreover, connecting prod-
ucts with high expected lost sales to the most underuti-
lized plants requires extensive simulation. This procedure
is tedious, time consuming, and highly variable.

In this section, we first utilize the theoretical results
obtained earlier to derive new design guidelines for the
general nonsymmetrical system. Then, based on these
guidelines, we develop a simple and easy-to-implement
heuristic to design flexible process structures. Although our
results assume bounded variation with �L

i and �U
i such that

the range 6�L
i �i1�

U
i �i7 covers all the demand realizations,

we can in practice set �L
i and �U

i more conservatively so
that the range captures 80% to 90% of the demand. By
doing this, the number of links needed will be smaller.

That said, the structural results identified in Theorem 4
are helpful if the number of small subsets is of manageable
size. However, for a larger system, checking through all
such subsets can be cumbersome. Instead, we approximate
by focusing on the extremely small subsets (singletons) and
the extremely large subsets (neighbors contain all but one
node). Note that the definition of ë -expander depends on
the choice of �U

i and �L
i . Ideally, we want �U

i to be large
and �L

i to be small so that we can capture as much of the
demand D̃i as possible within the interval 6�L

i �i1�
U
i �i7.

• Consider a singleton S = 8i9, a small subset in the
ë -expander structure. Hence, we need

∑

j∈â4S5

Cj ¾ �U
i �i3

that is, the value �U
i is bounded above by the following

inequality:

�U
i ¶

∑

j∈â48i95Cj

�i

0

Because we want �U
i to be large, we need 4

∑

j∈â48i95Cj5/�i

to be as large as possible.
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• Consider a plant node k in B, and T = â48k95 ⊆ A.
Let S = A \ T . S is likely to be a nonsmall subset, and
hence we need
∑

j∈â4S5

Cj ¾
∑

j∈B

Cj −
∑

iyS

�L
i �i3

that is, the term
∑

iyS �
L
i �i is bounded below by the fol-

lowing inequality:
∑

iyS

�L
i �i ¾

∑

j∈B

Cj −
∑

j∈â4S5

Cj ¾Ck0

If �L
i are identical for all i y S, then

�L
i

∑

iyS

�i ¾Ck0

Because we want �L
i to be small, we need Ck/4

∑

iyS �i5
to be as small as possible. In other words, we need
4
∑

iyS �i5/Ck = 4
∑

i∈â48k95�i5/Ck to be as large as possible.
In summary, we provide two new design guidelines as

follows.
• Make 4

∑

j∈â48i95Cj5/�i as large as possible for all
products i.

• Make 4
∑

i∈â48k95�i5/Ck as large as possible for all
plants k.
Next, we use the above guidelines to design our heuristic
by defining the following.

Definition 7. The node expansion ratio for i ∈ A is
given by

�i
4

=

∑

j∈B2 4i1j5∈FCj

E4D̃i5
0

Similarly, the node expansion ratio for j ∈B is

�j
4

=

∑

i2 4i1j5∈FE4D̃i5

Cj

0

Our heuristic works by adding an edge that is not in F
yet to increase the level of

�
4

= min
{

min
i∈A

�i1min
j∈B

�j

}

as much as possible. By adding one link at a time this way,
we build as much “flexibility” as possible into the system
with only one additional link. By repeating this step, we
can build a sparse process structure with high flexibility.
Note that the heuristic, summarized in Algorithm 1, is very
simple and requires minimal computational time. In fact,
when adding the next link, only �i∗ and �j∗ need to be
recomputed. Moreover, this heuristic can be further modi-
fied by examining the expansion ratios of pairs or triplets
of nodes together.

Algorithm 1 (Expansion heuristic: adding a new link)

1. Compute �i for each i ∈A, and �j for each j ∈B.
2. Set Â 2=A, and B̂ 2=B. Compute i∗ 2= arg mini∈Â �i,

and j∗ 2= arg minj∈B̂ �j .

3. If �i∗ <�j∗ , then go to Step 4. Else, go to Step 5.
4. If 4i∗1 j∗5yF, then F 2=F∪ 84i∗1 j∗59, STOP.

Else, B̂ 2= B̂\8j∗9, compute j∗ 2= arg minj∈B̂ �j , and repeat
Step 4.

5. If 4i∗1 j∗5yF, then F 2=F∪ 84i∗1 j∗59, STOP.
Else, Â 2= Â\8i∗9, compute i∗ 2= arg mini∈Â �i, and repeat
Step 5.

6. Numerical Studies
In this section, we conduct numerical studies to illustrate
the superior performance of process structures with high
expansion. We use two evaluation measures: the average
performance and the worst-case performance. The former
is widely used in practice and theoretical analysis, whereas
the latter reflects a structure’s robustness. We also demon-
strate how to implement the heuristic developed in §5
on the automobile production example from Jordan and
Graves (1995).

6.1. Levi Graph vs. the 3-Chain

As shown in Figure 1, we consider a symmetrical system
with 27 demand nodes and 27 plant nodes. We compare
two flexibility structures, both regular graphs with degree 3
and 27×3 = 81 total links. Figure 1-B is a 3-chain whereas
Figure 1-A is the “Levi graph,” well known in graph theory
for its specially selected links that ensure any two nodes
share at most one common neighbor. A pair of adjacent
nodes in the 3-chain, unfortunately, may have two common
neighbors. Thus, the Levi graph has a higher expansion
ratio for subsets of size not more than 2. In fact, this is
also true for subsets of size not more than 3, 4, and so on
until 24. According to Theorem 1, this implies that the per-
formance of the Levi graph can be guaranteed for a larger
range of demand realizations than the 3-chain. We examine
a symmetrical system whereby all products have identical
(not necessarily independent) distributions, and all plants
have the same capacity, which is equal to expected demand.
Without loss of generality, we assume that mean demand
is 2 for each demand node, and the capacity is also 2 for
each plant. We consider 11 types of demand distributions
that are a two-point distribution (demand is 1 or 4 with
probabilities 2/3 and 1/3), a uniform distribution (from 0
to 4), and a variety of truncated (at 0 and 4) normal dis-
tributions with different standard deviations (0.8, 1.2, 1.6)
and correlation coefficients (0, 0.3, 0.5). Here, every four
products fall into the same product group except for the last
group, which has only three products (i.e., products 1 to 4
in group 1, products 5 to 8 in group 2, etc.), and demands
for products in the same group are pairwise positively cor-
related according to the given correlation coefficient �.

For each distribution type, we generate 10,000 demand
scenarios and evaluate the performances of the two struc-
tures in terms of the maximum production that the structure
can support. Because the magnitude of the maximum pro-
duction varies across demand scenarios, we instead keep
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Figure 1. A Levi graph and a 3-chain.

track of performance relative to full flexibility. For exam-
ple, a relative average performance of 90% means that the
average maximum flow of the structure captures 90% of
the average maximum flow under full flexibility. Similarly,
a relative worst-case performance of 70% means that there
exists one unfavorable demand scenario such that the max-
imum flow of the structure captures only 70% of the max-
imum flow under full flexibility given that same demand
scenario. Table 1 summarizes the comparisons between the
Levi graph and the 3-chain across the different demand
distributions. For the variety of demand distributions con-
sidered, we are able to observe the following patterns. The
3-chain is already very good in the average sense, netting

between 95% and 99.7%, but the Levi graph still manages
to squeeze some improvements. However, the main advan-
tage of the Levi graph begins to show in the worst-case
performance comparisons, where the gap between the Levi
graph and the 3-chain is quite significant, ranging from
7 to 14 percentage points. In fact, the Levi graph is so good
that our data show that it is as good as full flexibility in
86% of the scenarios under the 2-point distribution, 83%
under uniform distribution, and 91-99% under the family
of normal distributions. For the 3-chain, these numbers are
28%, 39%, and 37-81%, respectively.

The penultimate column of Table 1 shows that the
3-chain seldom outperforms the Levi graph. More impor-
tantly, these instances do not occur in the worst case. Fur-
thermore, the worst-case performance of the 3-chain is
more sensitive than the Levi graph to changes in demand
variance and correlation. In summary, we observe that the
Levi graph has better and more robust performances com-
pared to the 3-chain, and we attribute this to the Levi
graph’s higher expansion ratio.

6.2. Jordan and Graves’ Automobile
Production Example

The objective of this section is to demonstrate the imple-
mentability of the heuristic we developed in §5. To this end,
we revisit the 16-product, 8-plant automobile production
example in Jordan and Graves (1995). Figure 2-A shows
the set of products with their respective expected demands,
the set of plants with their respective capacities, as well as
the base assignment that represents the existing configura-
tion of production capabilities. Suppose we have a budget
to add six new links. We can then employ our heuristic to
add the following links: (C, 7), (A, 8), (P, 2), (J, 1), (C, 6),
(A, 3), presented in the order by which they are to be added.
For example, if the budget is reduced to only five new
links, then (A, 3) will be excluded. Figure 2-D shows the
resulting structure. At this point, we note the ease of use
and exactness of our heuristic because it only uses infor-
mation on the capacities and expected demands and does
not require any simulation of demand realizations.

We conduct a numerical study on 11 types of demand
distributions and compare with the two structures proposed
in Jordan and Graves (1995). These structures, shown in
Figures 2-B and 2-C, were constructed by connecting prod-
ucts with most lost sales to the most underutilized plants
based on extensive simulation for estimating expected lost
sales and expected utilized capacities. We call these struc-
tures JG1 and JG2. We consider five types of independent
demand distributions and six types of correlated distribu-
tions. The independent distributions are a two-point distri-
bution, a uniform distribution, and a family of truncated
normal distributions with different coefficients of varia-
tion (CV = 00410061008). For the correlated distributions,
we follow Jordan and Graves (1995) and divide the prod-
uct nodes into three groups: Group 1 from Nodes A to F,
Group 2 from Nodes G to M, and Group 3 from Nodes
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Table 1. Levi graph vs. 3-chain: summary of performance comparisons, relative to the performance
of full flexibility.

Average performance Worst-case performance Number of scenarios

Levi graph 3-chain Levi graph 3-chain Levi > Levi < Levi =
Demand distributions (%) (%) (%) (%) 3-chain 3-chain 3-chain

Di = 1 with prob. 2/3,
Di = 4 with prob. 1/4. 99053 95085 87050 77078 6,941 102 2,917
Di ∼U60147 99078 97094 90024 83061 5,977 368 3,655

Di ∼N4210085 100000 99072 98026 91059 1,868 10 8,122
Di ∼N4211025 99097 99003 96024 86031 4,023 104 5,873
Di ∼N4211065 99092 98063 94039 87003 4,917 187 4,896

Di ∼N4210085, �= 003 100000 99028 95074 88096 3,190 5 6,805
Di ∼N4211025, �= 003 99095 98024 93018 81033 5,118 47 4,835
Di ∼N4211065, �= 003 99091 97076 92003 81088 5,850 69 4,081

Di ∼N4210085, �= 005 99099 98086 95084 84027 3,866 1 6,133
Di ∼N4211025, �= 005 99094 97065 92032 82023 5,690 17 4,293
Di ∼N4211065, �= 005 99087 97004 88098 74036 6,271 22 3,707

N to P. Grouped products are pairwise positively corre-
lated, but independent of products in other groups. We
consider two levels of demand correlation (� = 0031005)
for the normal distribution with three levels of variation
(CV = 00410061008).

For each distribution type, we generate 10,000 demand
scenarios and evaluate the performance of all three struc-
tures in terms of the maximum production that can be
supported by the structure. As in §6.1, we use relative aver-
age and worst-case performances to reflect how close the
performances are to full flexibility. The results are shown in
Table 2. For all distribution types, our heuristic structure is
at least as good as the JG1 structure in the average sense. It
also manages to be so against JG2 for the high-correlation
types and the high-variance-with-correlation types. How-
ever, in the worst-case sense, there is a toss up between the
heuristic structure and the JG structures, where the heuris-
tic structure seems to perform better under high correlation
and under high variance.3 Moreover, JG2 appears to be
slightly more superior to JG1. In general (in both average
and worst-case sense), the heuristic structure performs rel-
atively better under high correlation. However, these find-
ings must be taken with a grain of salt. Closer scrutiny
reveals that the differences in performance are only a cou-
ple of percentage points, quite often only a fraction of a
percentage point. That said, given the amount of numerical
simulations conducted, we are confident that the heuristic
structure performs just as well as the two JG structures.

So, how does one explain the comparable performance
among the three structures? Should the heuristic structure
not perform better because it was designed to have good
expansion properties? To address these questions, we com-
pute the node expansion ratios and obtain the lowest such
ratio among all plants and products for each of the three
structures. Table 3 summarizes these lowest ratios together
with the 2nd- and 3rd-lowest ratios, as well as the corre-
sponding ratios for pairs of products and pairs of nodes.

Interestingly, we find that the lowest node expansion ratios
for all three structures are equal at 1.4167. This explains
why these structures perform almost equally well in our
numerical study. For pairs of products or plants, the lowest
ratio for JG1 turns out to be lower than those of JG2 and
the heuristic structure, but not by much. This is consistent
with the numerical observations that JG1 performs slightly
worse than the heuristic structure and JG2. In summary, we
argue that the main reason why all three structures perform
equally well is because they all have good expansion prop-
erties, which confirms the theoretical results in this paper.

Although our heuristic structure performs about just as
well as the JG structures, it is important to note that
our structure was constructed using a computationally effi-
cient and exact method. It only uses information on mean
demand to design the process structure. In other words, our
approach is independent of the distributional information
and correlational structures of the demand process. In con-
trast, the method proposed by Jordan and Graves conducts
simulation using the actual demand distribution to add new
links to the structure. This means that more demand infor-
mation is required, the method is quite computationally
expensive, and the structure generated is highly variable
(e.g., one does not know whether he will obtain JG1, JG2,
or another structure). However, in terms of performance,
a simple, easy-to-implement method like our heuristic can
deliver just as well, primarily because our method exploits
the system’s expansion property.

7. Conclusions
In this paper, we examine how to design a flexible process
structure for a production system to better cope with fluc-
tuating supply and demand. We argue that good flexible
process structures are essentially highly connected graphs,
and use the concept of graph expansion (a measure of graph
connectivity) to achieve various insights into this design
problem.
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Table 2. JG example: summary of performance comparisons, relative to the performance of full flexibility.

Average performance Worst-case performance

Heuristic ¾ Heuristic ¾

Demand distributions Heuristic (%) JG1 (%) JG2 (%) JG1 JG2 Heuristic (%) JG1 (%) JG2 (%) JG1 JG2

Di = 0 with prob. 1/2,
Di = 2�i with prob. 1/2. 89085 88028 89036 Ø Ø 60078 58071 59020 Ø Ø
Di ∼U6012�i7 97030 96085 97031 Ø 79037 78005 78004 Ø Ø
Di ∼N4�i1004�i5 99017 99017 99027 Ø 83005 84026 87090
Di ∼N4�i1006�i5 98038 98024 98049 Ø 81070 79092 83032 Ø
Di ∼N4�i1008�i5 97095 97065 98001 Ø 80006 76044 82082 Ø
Di ∼N4�i1004�i5, �= 003 99035 99032 99039 Ø 78027 82042 82034
Di ∼N4�i1006�i5, �= 003 98073 98064 98075 Ø 79021 81033 79048
Di ∼N4�i1008�i5, �= 003 98045 98026 98042 Ø Ø 78001 78068 80014

Di ∼N4�i1004�i5, �= 005 99037 99034 99037 Ø Ø 83001 82088 82051 Ø Ø
Di ∼N4�i1006�i5, �= 005 98089 98070 98079 Ø Ø 80069 78028 80091 Ø
Di ∼N4�i1008�i5, �= 005 98052 98031 98043 Ø Ø 79067 78000 77072 Ø Ø

We analyze the worst-case performance of the flexible
design problem under a more general setting, which encom-
passes a large class of objective functions. We show that
whenever demand and supply are balanced and symmetri-
cal, the graph expander structure (a highly connected but
sparse graph) is within �-optimality of the fully flexible sys-
tem for all demand scenarios, although it uses a far smaller
number of links. Furthermore, the same graph expander
structure works uniformly well for all objective functions
in this class. We also generalize this result to the non-
symmetrical system, which is more relevant in practice, by
introducing the notion of ë -expander.

Based on this insight, we develop a simple and easy-to-
implement heuristic to design flexible process structures.
Numerical results show that this heuristic performs well
for a variety of numerical examples previously studied in
the literature. Our numerical studies also confirm that pro-
cess structures with good expansion properties have supe-
rior average and worst-case performances.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Table 3. JG example: summary of node-expansion and
pair-expansion ratios.

Node-expansion ratios Pair-expansion ratios

Heuristic JG1 JG2 Heuristic JG1 JG2

Lowest ratio 104167 104167 104167 102000 101721 102000
2nd-lowest

ratio 104348 104348 104348 102717 102000 102979
3rd-lowest

ratio 106579 105263 106875 104113 103306 103936

Endnotes
1. A k-chain (denoted by Ck) is a subgraph in an n by

n bipartite graph where each supply node i is linked to
demand nodes i1 i+ 11 0 0 0 1 i+ k− 1 (modulo n).

2. In graph theory, a path means a sequence of nodes
such that from each of its nodes there is an edge to the
next node in the sequence.

3. Two-point and uniform distributions have higher vari-
ances than normal distribution.
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