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Production postponement, the strategy to hold reserved production capacity that can be deployed based on actual demand
signals, is often used to mitigate supply-demand mismatch risk. The effectiveness of this strategy depends crucially on
the ease, or flexibility, in deploying the reserved capacity to meet product demands. Existing literature assumes that the
reserved capacity is fully flexible, i.e., capable of being deployed to meet the demand of any item in a multiproduct system.
Little is known if reserved capacity is held at many different locations, with each location having only a limited range
of flexibility on production options. This paper examines how effective the production postponement strategy is in this
environment.

When the amount of reserved capacity is small (i.e., postponement level near 0%), no amount of flexibility can reap
significant benefits. When the reserved capacity is high (i.e., postponement level near 100%), it is well known that a
sparse structure such as a 2-chain can perform nearly as well as a fully flexible structure. Hence, process flexibility beyond
2-chain has little impact on the effectiveness of production postponement strategy in these two extreme environments.
Interestingly, in a symmetric system, we prove that the performance of 2-chain, vis-à-vis the full flexibility structure, has
a wider gap when postponement level (i.e., amount of reserved capacity) is moderate, and thus process flexibility beyond
2-chain matters and affects appreciably the performance of the production postponement strategy. Fortunately, adding a
little more flexibility, say turning a 2-chain into a 3-chain, the system can perform almost as well as a full flexibility
structure for all postponement levels. This is important as first stage production capacity can be allocated as if the reserve
capacity is fully flexible. Our analysis hinges on an exact analytical expression for the performance of d-chain, obtained
from solving a related class of random walk problems. To the best of our knowledge, this is the first paper with analytical
results on the performance of d-chain for d > 2.

Subject classifications : process flexibility; production postponement; chaining strategy; multi-item newsvendor; stochastic
programming.

Area of review : Operations and Supply Chains.
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1. Introduction
Since the 1980s, we have witnessed the advent of globaliza-
tion and the tremendous effects it has on world consump-
tion and production patterns. A quick look at Interbrand’s1

2011 rankings of the 100 best global brands reveals that
these brands already hail from 15 different countries, up
from 13 in 2009. According to the report, each of these
brands derives at least a third of its earnings outside its
home country. This tells us that the world is increasingly
moving toward a phenomenon of borderless consumption.
With the internationalization of market competition, firms
nowadays need to build up the capacity to stay competitive
as a world-class company. The most common solution has
been to turn to outsourcing and offshoring, essentially tap-
ping into the production capabilities of factories, big and
small, all over the world. For example, many American
and European brands outsource their sourcing function to

Hong Kong-based Li and Fung, one of the world’s leading
supply chain companies, which controls a network of over
10,000 production facilities scattered everywhere in places
like China, Brazil, the Czech Republic, Honduras, Mauri-
tius, Mexico, Poland, South Africa, Zimbabwe, and coun-
tries in Southeast Asia (Feng 2007). On this phenomenon
of borderless manufacturing, Li and Fung believe the trend
is to rip the roof off the factory. According to Fung et al.
(2007), “in contrast to Henry Ford’s assembly line, where
all the manufacturing processes were under one roof, the
entire world is our factory.” Other than granting firms the
ability to increase capacity through global aggregation, this
strategy also allows the firms to control and reduce oper-
ating expenses as well as focus on improving their core
businesses, such as product design and marketing.

Another important trend is the fragmentation of con-
sumer demand. Instead of catering to one big market with
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more or less homogeneous demand, companies are begin-
ning to see more niche markets with diverse tastes as well
as the emergence of variety-seeking consumer behavior.
As this trend becomes more prevalent, we see an increas-
ing proliferation of product lines as companies struggle to
stay competitive. In the automobile industry, the number of
car models offered in the United States market has experi-
enced an upward trend since 1984 (Van Biesebroeck 2007).
The same phenomenon can be observed in other industries
such as electronics, clothing, food products, and even ser-
vices like entertainment/media and education. As a result,
demand uncertainty on a per product basis increases and
forecasting becomes more difficult.

Cast in the overall setting of globalization, the increased
demand uncertainty confronting manufacturers is further
heightened by the complexity of the global production and
consumption network. Facing a growing number of facili-
ties and products, firms now need to contend with not only
uncertainty, but multiple sources of uncertainty. The chal-
lenges here are twofold, namely, forecasting and production
planning. Forecasting becomes more difficult because of
disaggregation and accounting for correlations, and produc-
tion planning in a multiplant, multiproduct system entails
both network design and production allocation.

To deal with multiple sources of demand uncertainty, the
literature suggests two approaches that come hand in hand,
namely, (1) process flexibility and (2) production postpone-
ment. Process flexibility refers to a firm’s ability to pro-
vide varying goods or services, using different facilities or
resources. The more products each plant is capable of pro-
ducing, the more flexible is the production system. On the
other hand, we interpret production postponement as “the
proportion of a firm’s capacity that can be used to satisfy
demand immediately.” Since the firm can convert this post-
poned capacity into fulfilled demand quickly, the allocation
of this capacity can therefore be chosen on a make-to-order
basis (after receiving demand information). However, the
remaining proportion that cannot be used for immediate
fulfillment of demand must be deployed in a make-to-stock
fashion (prior to receiving demand information). The more
capacity falls under make-to-order, the more production
postponement the firm is said to possess. Process flexi-
bility generates value through risk pooling (Eppen 1979),
whereas production postponement creates value from the
option not to produce and when coupled with the former,
the option of what to produce. When there is no postpone-
ment, the benefits from risk pooling are lost. On the other
hand, when there is no flexibility, postponement only elim-
inates the cost of overage and nothing else. Hence, it is
important to carefully choose the mix of process flexibility
and production postponement.

To illustrate, consider a firm that owns a network of
several plants whose capacities can be used to meet the
(expected) demands for a range of products (i.e., a balanced
system). The firm must choose at what levels to deploy the
twin approaches of flexibility and postponement. Clearly,

with sufficiently long delivery lead time, the firm can opt
for the first-best solution—full flexibility and full postpone-
ment strategy. However, this strategy is costly because full
flexibility requires all plants to be capable of producing
all products (i.e., effectively pooling the plants’ capacity
together) whereas full postponement is possible only if the
delivery lead time is long—the firm can obtain complete
demand information prior to any production activity. In this
way, the firm can essentially use a central plant to pro-
duce all products (or a network of plants, all of which can
produce all products). When production lead time is mod-
erately long, firms can opt instead to produce a portion of
the demand by forecast first, before reverting to make-to-
order mode to fully utilize the production capacity during
the lead time window. We call this option A—full flexibil-
ity and partial postponement. On the other hand, firms like
Li and Fung can contract a network of small manufactur-
ers, each specializing in only a limited number of products.
These small manufacturers are typically on standby and can
respond to production requests very quickly after receiv-
ing firm orders. Unlike a centralized facility, these plants
have only limited range of production flexibility. We can
think of this as option B—partial flexibility and full post-
ponement. In practice, however, firms often adopt a hybrid
of the above—a portion of the capacity from the contrac-
tors are used as reactive capacity, but because of short
delivery lead time, a chunk of the contractors’ capacity are
used in a make-to-stock fashion to produce the products
in advance. We call this option C—partial flexibility and
partial postponement.

Jordan and Graves (1995) show that option B, config-
ured the right way using a “chaining” strategy, can already
accrue most (almost 95%) of the benefits of the first-best
solution at a small fraction of the cost. They model the
problem as a two-stage stochastic program where the strate-
gic decision of process flexibility design is carried out in
the first stage and the production allocation is chosen in the
second stage after demand is realized.2 This chaining con-
cept has been extended in various other directions (Graves
and Tomlin 2003, Gurumurthi and Benjaafar 2004, Hopp
et al. 2004, Bish et al. 2005, Iravani et al. 2005, Muriel
et al. 2006, Deng and Shen 2013). Likewise, efforts were
also expended to strengthen its analytical aspect (Akşin and
Karaesmen 2007; Chou et al. 2010a, b, 2011; Bassamboo
et al. 2010, 2012; Simchi-Levi and Wei 2012). For a review
of process flexibility and discussion on how the concept has
been deployed in several manufacturing and service sys-
tems, please refer to Chou et al. (2008). However, to our
best knowledge, none of these papers consider the impact
of partial production postponement.

The analytical papers in the literature focus mainly on
the 2-chain, where each plant can produce exactly two
products and each product can be produced by two plants.
These papers find that the 2-chain performs extremely well.
For example, Chou et al. (2010b) use a random walk
approach to characterize the asymptotic performance of the
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2-chain and Simchi-Levi and Wei (2012) use a supermod-
ularity property to characterize the performance of the 2-
chain in finite systems. As will be unveiled in this paper,
there are situations where higher chains (e.g., 3-chain) are
necessary to offset performance losses due to partial post-
ponement. To the best of our knowledge, there are no exist-
ing results on the d-chain for d > 2. Moreover, the super-
modulariy technique used in Simchi-Levi and Wei (2012)
no longer works for d-chains when d > 2. We generalize
the random walk argument used in Chou et al. (2010b) to
higher chains and to arbitrary levels of production post-
ponement. More importantly, this new approach allows us
to examine the performance of systems such as option A
and option C.

In option A or option C, we need to address the issue
of first-stage production allocation—what is the best way
to utilize production capacity in the first stage when the
second-stage production capacity is limited by partial flex-
ibility? Although a number of papers discuss or study the
postponement decision (Signorelli and Heskett 1984, Lee
et al. 1993, Lee and Tang 1997, Swaminathan and Lee
2003), most of them consider postponement in terms of
deferring certain steps in the manufacturing process to a
point when demand information becomes available. Our
interest, however, is in production postponement, which we
have defined as the proportion of capacity that can be allo-
cated after demand information is known. Van Mieghem
and Dada (1999) examine the trade-off between produc-
tion postponement and price postponement, but they do not
consider the issue of process flexibility.

The work that most closely relates to ours is that of
Fisher and Raman (1996), who demonstrate that option A—
where a single production facility acts equivalently as a
fully flexible production network—can lead to significant
savings. For Sport Obermeyer, a major fashion skiwear
company, they report that after observing only 20% of ini-
tial demand, the company can increase its profits by as
much as 60%. Although much of this increase is proba-
bly attributed to margin arithmetic (Cachon and Terwiesch
2009) because net profit is relatively low to begin with,
the study nonetheless demonstrates the substantial impact
of production postponement—a small portion of reactive
capacity (fully flexible) can have tremendous value in
matching production capacity with demand in the supply
chain. However, their model assumes full flexibility in the
second stage and hence is not able to handle systems with
partial flexibility, that is the more general option C. In this
paper, we essentially combine the key insights in these
areas to arrive at the following observation—that a small
amount of flexibility (3-chain, instead of 2-chain) and a
small amount of reserved capacity, can add tremendous
value in matching supply and demand. Furthermore, we
quantify the performance gap of a 3-chain vis-a-vis the
first-best solution under different postponement levels.

The rest of the paper is organized as follows. In §2,
we introduce the basic production allocation model and

define the performance measures. Section 3 presents our
analysis of the first-stage make-to-stock production deci-
sion, given that the second-stage make-to-order production
network has limited range of production flexibility. This
resulted in a complex two-stage stochastic programming
model. We derived structural results for the optimal produc-
tion plan in the first stage, when the production system is
symmetric but not necessarily balanced. In §4, we analyze
the overall performance of different productions systems
with partial postponement strategy. We show analytically
in §5 that the 3-chain can recover most of the flexibility
loss caused by partial postponement. In §5.1, we present the
random walk approach for asymptotic performance of long
chains with degree greater than two and any arbitrary level
of postponement. In §6, we examine the postponement and
flexibility trade-off under asymmetric systems where plant
capacities and product demand distributions are no longer
identical. Finally, §7 concludes the paper.

2. The Model
In this section, we generalize the process flexibility model
under full postponement to the case where the postpone-
ment level can range anywhere between the extremes of
make-to-stock and make-to-order. To this end, we develop
a model to capture partial levels of both process flexibil-
ity and production postponement. The setting is as fol-
lows. We consider a system with n plants and n products.
As in the literature, we let A4n5 and B4n5 represent the
set of product nodes and the set of plant nodes, respec-
tively. The product demands are D11D21 0 0 0 1Dn, which are
independent and identically distributed continuous random
variables with density function �. The plants, on the other
hand, have fixed capacities of C units each. This setting
is known as the symmetric but unbalanced case. In some
instances, we shall consider the balanced and symmetric
case where C =� for ease of exposition.

Early on, the firm carries out two strategic decisions,
namely, the level of flexibility and the level of postpone-
ment. For flexibility, the firm chooses a flexibility con-
figuration G4n5 ⊂ A4n5 × B4n5. Because of their well-
established efficiency, we focus on a class of symmetric
flexibility structures known as d-chains. Doing so reduces
the decision to a scalar d, denoting the common node
degree. Although there exist many structures with all nodes
having degree d, d-chains are the ones that form the longest
possible chain.

Definition 1. For d = 1121 0 0 0 1 n, the d-chain is

Cd4n5
ã
=

{n−d+1
⋃

i=1

84i1 i51 4i1 i+ 151 0 0 0 1 4i1 i+d− 159
}

∪

{ n
⋃

i=n−d+2

84i1 i51 4i1 i+ 151 0 0 0 1 4i1 n51

4i1151 4i1251 0 0 0 1 4i1 i− n+d− 159
}

0
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The extremes of d = 1 and d = n correspond to no flexibil-
ity (also known as the dedicated system) and full flexibility,
respectively. All other values of d in between account for
varying levels of partial flexibility, thus generalizing the 2-
chain (or chaining) defined earlier. Whenever the context
allows, we also return to the following previous notations
in the literature:

D4n5=C14n51 C4n5=C24n51 F4n5=Cn4n50

For production postponement, we model a two-stage pro-
duction process and define � as the proportion of capacity
postponed to the second stage while 1 −� is for first-stage
consumption. When � = 0, we have a make-to-stock set-
ting and all production must be decided in the first stage.
When � = 1, our model reduces to the make-to-order,
full-postponement setting in the literature. We allow the
firm to choose its desired postponement level � over the
range 60117.

Once a combination of G4n5 (equivalently, d) and �
is chosen, we have to look beyond just minimizing lost
sales because overage cost is no longer zero in this gen-
eral case. The performance measure to use is expected
mismatch cost, which can be determined by solving the
following two-stage problem. In the first stage, 41 − �5C
units are made available at each plant to produce what-
ever allowed combination of products 1121 0 0 0 1 n to stock,
i.e., without information on actual final demand. In the sec-
ond stage, the remaining �C units in each plant become
available to meet whatever actual demand the firm cannot
fill from first-stage stock. Our problem here is essentially
a multi-item newsvendor model with second-stage supply
and partial capacity sharing, whereby the expected mis-
match cost is minimized. For ease of analysis, we let the
unit overage cost and unit underage cost for all products
be identical, denoted by co and cu, respectively. Further
denote by G∗

G4n54�C5 the optimal expected mismatch cost.
The production allocation decisions are xij and yij , which
denote the amounts of product i produced by plant j in the
first and second stages, respectively:

4P152 G∗

G4n54�1C5= min
x

GG4n54x1�1C5

s.t.
n
∑

i=1

xij ¶ 41 −�5C ∀ j = 1121 0 0 0 1 n

xij ¾ 0 ∀ i1 j = 1121 0 0 0 1 n

xij = 0 ∀ 4i1 j5yG4n5

where

GG4n54x1�1C5=cog14x5+cug24x5−cuE6hG4n54x1�1D1C57

g14x5=
n
∑

i=1

E
[( n
∑

j=1

xij −Di

)+]

g24x5=
n
∑

i=1

E
[(

Di−

n
∑

j=1

xij

)+]

and

hG4n54x1�1D1C5= max
y

n
∑

i=1

n
∑

j=1

yij

s.t.
n
∑

j=1

yij ¶
(

Di −

n
∑

j=1

xij

)+

∀ i = 1121 0 0 0 1 n

n
∑

i=1

yij ¶ �C ∀ j = 1121 0 0 0 1 n

yij ¾ 0 ∀ i1 j = 1121 0 0 0 1 n

yij = 0 ∀ 4i1 j5yG4n50

Before proceeding further, we summarize the sequence of
events.

1. The firm decides flexibility structure G4n5 (equiva-
lently, the value of d for d-chaining) and the level of post-
ponement �.

2. The first-stage production decisions xij are made.
3. Product demands Di are observed.
4. The second-stage production decisions yij are made.
5. Mismatch costs are incurred.
Because our interest is to compare the performance

of any flexibility-postponement combination vis-à-vis the
first-best solution, we introduce the following quantities,
which will help us understand the effects of having only
partial flexibility, partial postponement, or both.

Definition 2. Given any combination of G4n5 and �, and
capacity C, the optimality loss relative to the first-best solu-
tion is the difference in optimal expected mismatch costs:

LT 4G4n51�1C5
ã
=G∗

G4n54�1C5−G∗

F4n5411C50

Furthermore, this quantity is made up of two components.
The postponement loss is the loss due to partial postpone-
ment

LP 4�1C5
ã
=G∗

F4n54�1C5−G∗

F4n5411C51

while the flexibility loss is the loss due to partial flexibility

LF 4G4n51�1C5
ã
=G∗

G4n54�1C5−G∗

F4n54�1C5

such that LT 4G4n51�1C5= LP 4�1C5+LF 4G4n51�1C5.

For the class of flexibility structures in Definition 1, we
can also gauge the percentage of flexibility loss as system
size grows very large. To do so, we define the following
performance measure.

Definition 3. The asymptotic chaining efficiency 4ACE5
of the d-chain at postponement level � and capacity C is
the expected improvement (over dedicated structure) ratio
of the d-chain relative to full flexibility both at postpone-
ment level � as system size approaches infinity:

ACE4d1�1C5 ã
= lim

n→�

G∗

D4n54�1C5−G∗

Cd4n5
4�1C5

G∗

D4n54�1C5−G∗

F4n54�1C5
0
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3. Make-to-Stock: The First-Stage
Decision

To gain insights that can be useful for the general case
where plant capacities and demand distributions are not
identical, we first focus on the symmetric but unbalanced
case. Interestingly, in this setting, we can characterize the
first-stage decision analytically under certain conditions—
we show that the first-stage production decision does not
depend on the process flexibility structure. This allows us
to simplify the entire optimization problem.

To this end, we define Problem 2 by relaxing first-stage
production to be fully flexible while still holding second-
stage production to G4n5-flexibility. Notice that under full
flexibility, there will be multiple optimal solutions in the
first stage. Hence, the n2-dimensional decision vector x in
(P1) can be reduced to the n-dimensional decision vector z
by letting zi =

∑n
j=1 xij1 ∀ i = 1121 0 0 0 1 n:

4P252 Ḡ∗

G4n54�1C5

= min
x

GG4n54x1�1C5

s.t.
n
∑

i=1

xij ¶ 41 −�5C ∀ j = 1121 0 0 0 1 n

xij ¾ 0 ∀ i1 j = 1121 0 0 0 1 n

= min
z

ḠG4n54z1�1C5

s.t.
n
∑

i=1

zi ¶ 41 −�5nC

zi ¾ 0 ∀ i = 1121 0 0 0 1 n1

where

ḠG4n54z1�1C5= coḡ14z5+ cuḡ24z5− cuE6h̄G4n54z1�1D1C57

ḡ14z5=

n
∑

i=1

E64zi −Di5
+7

ḡ24z5=

n
∑

i=1

E64Di − zi5
+7

and

h̄G4n54z1�1D1C5= max
y

n
∑

i=1

n
∑

j=1

yij

s.t.
n
∑

j=1

yij ¶ 4Di − zi5
+

∀ i = 1121 0 0 0 1 n

n
∑

i=1

yij ¶ �C ∀ j = 1121 0 0 0 1 n

yij ¾ 0 ∀ i1 j = 1121 0 0 0 1 n

yij = 0 ∀ 4i1 j5yG4n50

To characterize the first-stage decision, we present the fol-
lowing results.

Lemma 1. Suppose f 2 Rn → R and dom f = Rn
+

. Define
g2 Rn →R by g4x5= f 4x+5, where x+ is the component-
wise positive part of x. If f is convex in x and nondecreas-
ing in each argument xi over 601�5, then g is convex in x.

Proof. This lemma is a special case of the vector com-
position result in Section 3.2.4 of Boyd and Vandenberghe
(2009, p. 86). �

This allows us to show that the function h̄G4n54z1�1D1C5
is convex in z, leading to our first result.

Proposition 1. ḠG4n54z1�1C5 is convex in z for any struc-
ture G4n5.

Next, we present a short lemma to help us prove our first
main result.

Lemma 2. Suppose f 2 R → R is an increasing convex
function while g1 ĝ2 R → R are decreasing convex func-
tions such that ĝ′4x5 ¶ g′4x5 ¶ 0. If x∗ minimizes f 4x5+

g4x5 and x̂∗ minimizes f 4x5+ ĝ4x5, then x∗ ¶ x̂∗.

Proof. It follows from optimality that f ′4x∗5 = −g′4x∗5
and f ′4x̂∗5= −ĝ′4x̂∗5. Since f is convex while −g, −ĝ are
concave, f ′ is nondecreasing and −g′, −ĝ′ are nonincreas-
ing. Because −ĝ′4x5¾−g′4x5, x∗ ¶ x̂∗. �

We are now ready to present our first main result. Let
ê̂n denote the n-fold convolution of ê, and v∗ the unique
solution to the following equation:

6coê4v5+ cuê̂n4nv+�nC57= cu0 (1)

Proposition 2. When G4n5 is symmetric, x∗
ii = x∗

jj1 ∀ i 6= j
and x∗

ij = 01 ∀ i 6= j is a solution to both (P1) and (P2).
Furthermore, if 41 −�5C ¶ v∗, then x∗

ii = 41 −�5C.

Proof. From Proposition 1, the function ḠG4n54z1�1C5 is
convex. Let z4k5 denote the vector obtained by shifting
the vector z by k positions in the clockwise direction.
Since the flexible structure is symmetric, and D’s are i.i.d.,
ḠG4n54z1�1C5= ḠG4n54z

4k51�1C5 for all k. Furthermore,

ḠG4n5

(

1
n

n−1
∑

k=0

z4k51�1C
)

¶ 1
n

n−1
∑

k=0

ḠG4n54z
4k51�1C5

= ḠG4n54z1�1C50

Observe that the components of vector 41/n5
∑n−1

k=0 z
4k5 are

all equal to 41/n5
∑n

i=1 zi. Hence, the objective function is
minimized at z∗

i = z01 ∀ i = 1121 0 0 0 1 n. Note that only the
dedicated arcs need to be utilized for this case. It follows
that the solution obtained is also optimal for 4P15. Hence,
the flexibility structure does not affect the first-stage pro-
duction, as long as the structure is symmetric.

We want to find z0 that minimizes

ḠG4n54z011�1C5= coḡ14z015+ cuh̄14z011�1C5

¾ coḡ14z015+ cuh̄24z011�1C5

¾ coḡ14z015+ cuh̄34z011�1C51
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where

h̄14z011�1C5=E
[ n
∑

i=1

4Di−z05
+
−h̄G4n54z011�1D1C5

]

h̄24z011�1C5=E
[ n
∑

i=1

4Di−z05
+
−h̄F4n54z011�1D1C5

]

=E
[ n
∑

i=1

4Di−z05
+
−min

( n
∑

i=1

4Di−z05
+1�nC

)]

=E
[

max
(

01
n
∑

i=1

4Di−z05
+
−�nC

)]

h̄34z011�1C5=E
[

max
(

01
n
∑

i=1

4Di−z05−�nC

)]

0

Let

Ĝ4z01�1C5= coḡ14z015+ cuh̄34z011�1C5

= co

n
∑

i=1

∫ z0

0
4z0 − �i5dê4�i5

+ cu

∫ �

nz0+�nC
4� − nz0 −�nC5dê̂n4�51

where � =
∑n

i=1 �i and ê̂n is the n-fold convolution of ê.
Next, we define the following unconstrained minimizers:

z̄∗

0
ã
= arg min

z0

8ḠG4n54z011�1C59

ẑ∗

0
ã
= arg min

z0

8ĜG4n54z011�1C590

To find ẑ∗
0, we take the following first-order condition:

¡Ĝ4z01�1C5

¡z0

= conê4z05− cun61 − ê̂n4nz0 +�nC57

0 = n6coê4ẑo5− cu + cuê̂n4nẑo +�nC570

It follows that ẑ∗
0 = v∗. Note further that ¡h̄1/¡z0 ¶

¡h̄2/¡z0 ¶ ¡h̄3/¡z0 ¶ 0. By Lemma 2, z̄∗
0 ¾ ẑ∗

0. Because
ḠG4n54z011�1C5 is convex and 41 − �5C ¶ v∗ ¶ z̄∗

0, we
have

z∗

0 = arg min
z0¶41−�5C

8ḠG4n54z011�1C59= 41 −�5C0

Hence, the optimal solution to (P2) is z∗
i = z∗

0 = 41 −�5C1
∀ i = 1121 0 0 0 1 n. This is equivalent to x∗

ii = 41 − �5C1
∀ i = 1121 0 0 0 1 n and x∗

ij = 01 ∀ i 6= j . Since this solution is
feasible for (P1), it is also optimal for (P1). �
Remark 1. If 41 − �5C > v∗, then the following results
remain true: z∗

i = z01 ∀ i = 1121 0 0 0 1 n; v∗ ¶ z̄∗
0. However,

we may encounter one of two cases: 41 − �5C ¶ z̄∗
0 and

41 − �5C > z̄∗
0. In the first case, the optimal primary pro-

duction remains at z∗
0 = 41 − �5C. In the second case,

the optimal primary production is less definitive at z∗
0 ∈

6v∗1 41 − �5C5. Here, we again have xij = 01 ∀ i 6= j , and
the optimal solution also optimal for (P1).

Remark 2. It is also interesting to note that our prob-
lem extends the single-item newsvendor in two directions.
In (1), setting � = 0 and n = 1 will result in the classical
single-item newsvendor critical fractile formula. If � > 0,
then we have some second-stage backup supply (albeit lim-
ited). If we also set n > 1, then we have multiple items
with i.i.d. demands and fully flexible second-stage supply.
Our problem of interest is more complicated because we
only have partially flexible second-stage supply.

Proposition 2 tells us that for the symmetric but unbal-
anced case, the optimal first-stage production is to exhaust
all first-stage capacity for primary production regardless of
the flexibility structure. In other words, whatever the flex-
ibility structure, it must act like a dedicated structure in
the first stage. This result is important in two ways. First,
it confirms our intuition that flexible capacity is useless if
there is no postponement. Second, it allows us to solve the
first-stage problem, which in turn simplifies our succeeding
analysis of the effect of partial postponement.

For the general asymmetric case where plant capacities
and product demands are not necessarily identical, the first-
stage production decision becomes unwieldy. How to allo-
cate the first-stage capacity among the different products
becomes a very difficult and complicated problem. As a
result, we may have to settle for heuristic approaches such
as the “mean rule” and the “variance rule.” Essentially, the
mean rule suggests that total first-stage capacity be allo-
cated among the products proportionally according to the
mean values of their demands. On the other hand, the vari-
ance rule follows the principle that products with a higher
coefficient of variation should utilize less of the (specula-
tive) first-stage capacity. These are more sophisticated poli-
cies and we shall relegate their discussion to a latter part
in §6. We notice that these rules are often employed in
production systems that have second-stage full flexibility
structure. We address the performance of these production
rules when each plant has only limited range of production
flexibility in the rest of this paper.

4. Effect of Partial Postponement
In this section, we use results from the previous section to
examine systems with partial postponement. We first study
option A (with full flexibility), followed by option C (with
partial flexibility).

4.1. Full Flexibility

We examine how full flexibility with partial postponement
performs relative to the first-best solution. Since we have
full flexibility in both systems, it boils down to solving
G∗

F4n54�1C5 for different postponement levels � ∈ 60117.
Using Proposition 2, we can obtain a closed-form expres-

sion for the optimal expected mismatch cost. For C not
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too large, i.e., C ¶ v∗/41 − �51 ∀� ∈ 60117, where v∗ is
obtained from Equation (1),

G∗

F4n54�1C5=co

n
∑

i=1

E6441−�5C−Di5
+7

+cuE
[

max
(

01
n
∑

i=1

4Di−41−�5C5+−�nC

)]

0

There is no flexibility loss (i.e., LF 4F4n51�1C5= 0)
because we have a fully flexible system. Hence, we
focus on postponement loss LP 4�1C5

ã
=G∗

F4n54�1C5 −

G∗

F4n5411C5. Since G∗

F4n54�1C5∼O4n5 for �� 1, whereas
G∗

F4n5411C5∼O4
√
n5≈G∗

C4n5411C5, we conclude that full
flexibility with low postponement (i.e., partial postpone-
ment with small �) could not attain the same order of per-
formance as full postponement with partial flexibility. This
leads us to the following insight: if we are to gainfully
employ full flexibility with partial postponement, we must
be able to postpone a substantial amount of the capacity
4say �¾ 0055.

4.2. Partial Flexibility

Next, what happens when we have partial levels of both
flexibility and postponement? In particular, how much is
the flexibility loss under partial postponement? Under full
postponement, it has already been established that flexi-
bility loss (equivalently, optimality loss) of the 2-chain is
negligible. Likewise, Proposition 2 tells us that under no
postponement, any form of flexibility brings no additional
benefits. Hence, full flexibility is not any better than the
2-chain in the same way that the 2-chain is not any better
than the dedicated structure. This implies that the flexi-
bility loss of the 2-chain under no postponement is zero.
The next question becomes whether we can also say that
the flexibility loss of the 2-chain is negligible under partial
postponement.

To answer this question, we characterize the flexibil-
ity loss LF 4C24n51�1C5 of the 2-chain as postpone-
ment level � changes from 0 to 1. Specifically, for C ¶
v∗/41 −�51 ∀� ∈ 60117,

LF 4C24n51�1C5
ã
=G∗

C24n5
4�1C5−G∗

F4n54�1C5

= cuE6h̄F4n5441 −�5C11�1D1C57

− cuE6h̄C24n5
441 −�5C11�1D1C571

where h̄G4n54 · 5 is as defined in (P2). Moreover, the second
equation is due to Proposition 2, which allows cog14x

∗5+

cug24x
∗5 to cancel out. The next result shows that the flex-

ibility loss of the 2-chain is largest at some postpone-
ment level strictly between zero postponement and full
postponement.

Proposition 3. If 41 − �5C ¶ v∗1 ∀� ∈ 60117, then ∃� ∈

40115 such that LF 4C24n51�1C5 is largest.

Proof. Please refer to Appendix A.

Proposition 3 suggests that for capacity not too large and
for certain levels of partial postponement, the performance
gap between full flexibility and the 2-chain may be much
more sizable than it is under the full postponement case
or the no postponement case. To see how large this gap
can grow, we use the sample average approximation (SAA)
method for stochastic programming. We sample a large
number K of demand scenarios, with which we reformulate
(P1) into the following large linear program. For purpose of
illustration, we consider the symmetric case where demand
and capacity are balanced (i.e., C =�).

4P352

G∗

G4n54��5

=
1
K

min
x1y1v1w

[

n
∑

i=1

K
∑

k=1

4c0v
k
i +cuw

k
i 5−cu

n
∑

i=1

n
∑

j=1

K
∑

k=1

ykij

]

s.t. vki ¾
n
∑

j=1

xij −Dk
i ∀ i=11210001n1∀k=11210001K

wk
i ¾Dk

i −

n
∑

j=1

xij ∀ i=11210001n1∀k=11210001K

n
∑

i=1

xij ¶41−�5� ∀ j=11210001n

n
∑

j=1

ykij ¶wk
i ∀ i=11210001n1∀k=11210001K

n
∑

i=1

ykij ¶�� ∀ j=11210001n1∀k=11210001K

xij ¾0 ∀ i1j=11210001n

xij =0 ∀4i1j5yG4n5

ykij ¾0 ∀ i1j=11210001n1∀k=11210001K

ykij =0 ∀4i1j5yG4n51 ∀k=11210001K

vki 1w
k
i ¾0 ∀ i=11210001n1∀k=11210001K0

Dk is the kth demand scenario, and vki and wk
i are auxiliary

variables introduced to linearize the formulation. We can
also interpret vki and wk

i as the overage and underage quan-
tities, respectively.

As in Jordan and Graves (1995), we simulate a 10-plant,
10-product system whereby each product has demand that
follows a normal distribution with mean 100 units and stan-
dard deviation 30 units. We assume each plant has a capac-
ity of 100 units, and for this illustration, co = cu = 1. For
each postponement level � ∈ 80000100051 0 0 0 10095110009,
and each degree of flexibility d ∈ 81121 0 0 0 191109, we
solve (P3) over a fixed set of K = 11000 demand sce-
narios. Figure 1 plots the expected mismatch cost against
the postponement level for different levels of flexibility.
As expected, the gaps between the 2-chain line and the full
flexibility line are negligible and zero at �= 1 and �= 0,
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Figure 1. Expected mismatch cost vs. postponement
level.
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respectively. However, for � ∈ �0�1�0�7�, the gap becomes
quite sizable, especially between 0.2 and 0.5 where the gap
ranges from 23% to 33%.

These findings, together with Proposition 3, lead us to
the following insight: the 2-chain, which is known to be
extremely effective, is no longer as effective under partial
postponement. To gain further insights, we take the follow-
ing example. Consider a 4×4 system with identical product
demands following a two-point distribution with values 1
and 3, with equal probabilities of 0.5. The plant capacities
are all 2 units each. We further suppose that co = cu = 1
and �= 0�5. Numerical tests show that for all 16 possible
demand scenarios, the 3-chain performs as well as full flex-
ibility. The 2-chain is also as good as full flexibility when
total demand is strictly lower or strictly greater than total
capacity. However, when total demand equals total capac-
ity and two consecutive products have high demand while
the other two have low demand, the 3-chain outperforms
the 2-chain. An example is when demands for products 1
and 2 are three units each, while demands for products 3
and 4 are one unit each. More interestingly, this observa-
tion does not hold for �= 1, wherein 2-chain is as good as
full flexibility.

Looking at Figure 1, one may wonder why the gap
between 2-chain mismatch cost and full flexibility mis-
match cost is largest at intermediate levels of postpone-
ment. Intuitively, we can think of two forces that affect the
size of this gap. The first force is caused by the unbalanced
nature of the second-stage allocation problem. That is,
the more unequal the expected remaining demand is to
the remaining capacity, the larger the mismatch cost gap.
It is easy to see that the second-stage problem becomes
more unbalanced as � decreases because of demand trun-
cation at 0. The second force is caused by the relative
magnitude of the second-stage cost vis-a-vis the first-stage
cost. Clearly, the smaller the �, the smaller the effect
of the second-stage decision on the total mismatch cost.

The trade-off between these two forces explains why the
gap is largest at intermediate postponement levels.

That said, if one wants to approximate the benefits of full
flexibility and full postponement using only partial levels
of both these dimensions, care has to be taken in choosing
the proper levels of flexibility and postponement that can
give the desired result. In the event of partial postponement,
more flexibility (a third or fourth layer of flexible links)
is necessary to make up for not only the postponement
loss, but more importantly, the increased flexibility loss.
We explore in the next section just how much additional
flexibility is necessary.

5. Value of the 3-chain
In this section, we demonstrate that the 3-chain can recover
most of the flexibility loss in the 2-chain created by partial
postponement. Table 1 shows a partial listing of the cost
results generated in Figure 1. As expected, the flexibility
loss is smallest at the two extremes of �= 0 and �= 1. For
� ∈ �0�1�0�5�, the gap between 2-chain and full flexibility
increases to over 30% and beyond. However, by employing
the 3-chain, the flexibility loss can be reduced to below
8.2% for all values of �.

Remark 3. Even though the focus of this paper is on flex-
ibility loss and how it is affected by changes in postpone-
ment level, our study also provides interesting insights that
can guide companies in building their postponement capa-
bilities. To be more specific, Table 1 can also be used to
obtain the postponement loss percentages at various post-
ponement levels. For example, when � = 0�4, the post-
ponement loss percentage is �1�108�80−797�84�/797�84 =

39�0%. By observing the postponement loss percentages
at various postponement levels, we can see that the lower
the postponement level, the higher both the postponement
loss and the marginal postponement loss (i.e., the additional
postponement loss the system would incur with every unit
of postponement level reduced). We also observe that this
marginal postponement loss can be quite substantial when
the postponement level is low. In other words, when the
postponement level is low, adding a little postponement
capability into the system can greatly improve the system
efficiency, and the benefit of further increasing the post-
ponement level can be quite marginal once the postpone-
ment level reaches a certain degree. Although it is often
hard to achieve full postponement in practice, this obser-
vation provides useful insights for companies by pointing
out the importance and sufficiency of partial postponement.
Interestingly, we also find that unlike postponement loss
percentage, which decreases with postponement level, flex-
ibility loss percentage is largest at intermediate postpone-
ment levels.

Although system size n = 10 is used in Jordan and
Graves’ (1995) initial example on the effectiveness of the
2-chain, Chou et al. (2010b) asymptotic analysis shows
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Table 1. Expected cost and flexibility loss for 2-chain and 3-chain with partial
postponement.

Expected cost Flexibility loss (% age full flex)

Postponement level � 2-chain 3-chain Full flex 2-chain 3-chain

0.00 41812090 41812090 41812090 0000 (0.0%) 0000 (0.0%)
0.10 31505060 31303030 31131090 373070 (11.9%) 171040 (5.5%)
0.20 21557040 21245040 21075020 482020 (23.2%) 170020 (8.2%)
0.30 11906040 11562020 11450010 456030 (31.5%) 112010 (7.7%)
0.40 11481020 11167080 11108080 372040 (33.6%) 59000 (5.3%)
0.50 11214060 959063 935077 278083 (29.8%) 23086 (2.5%)
0.60 11050090 860031 854037 196053 (23.0%) 5094 (0.7%)
0.70 949047 818051 817051 131096 (16.1%) 1000 (0.1%)
0.80 889027 804055 804055 84072 (10.5%) 0000 (0.0%)
0.90 850025 799014 799014 51011 (6.4%) 0000 (0.0%)
1.00 827005 797084 797084 29021 (3.7%) 0000 (0.0%)

that as n increases to say 100, the 2-chain still performs
very well. We examine next if the 3-chain can still recover
the flexibility loss of the 2-chain when n grows very large.
To this end, we perform asymptotic analysis similar to
Chou et al. (2010b) analysis of the 2-chain under full post-
ponement. Unlike their paper, our method works for any
d-chain, d¾ 2, under any postponement level �.

5.1. Asymptotic Performance of the 3-chain

To study the phenomenon of increasing system size, we
extend the method of asymptotic analysis introduced in
Chou et al. (2010b). In Definition 3, we propose that the
relative flexibility loss of every d-chain with postponement
level � and capacity C can be measured by its asymptotic
chaining efficiency (ACE). Although the next result also
holds for the unbalanced case, we shall consider the bal-
anced case where C =� for ease of exposition. This allows
us to remove C from the function arguments and notations
and simplify ACE as follows:

ACE4d1�5 ã
= lim

n→�

G∗

D4n54�5−G∗

Cd4n5
4�5

G∗

D4n54�5−G∗

F4n54�5

= lim
n→�

ĥCd4n5
4�5− ĥD4n54�5

ĥF4n54�5− ĥD4n54�51

where ĥG4n54�5 = E6h̄G4n5441 − �5�11�1D1�57 and
h̄G4n54 · 5 is the maximum flow problem defined in (P2).
When d = 2 and � = 1, the system boils down to 2-chain
with full postponement, precisely the system studied by
Chou et al. (2010b). In what follows, we develop a gen-
eralized method to analyze ACE4d1�5 for 2 ¶ d ¶ n and
� ∈ 60117 with the following new features.

• The entire analysis involves a different structure called
a “d-path.”

• The resulting random walk has a different random step
size Xi

ã
= D̃i − C̃.

• The resulting random walk has a different upper
absorbing boundary at 4d− 15C̃.

• The transformed random walk is an alternating regen-
erative process whose odd cycles are not identical to its
even cycles.

We are now ready to present our method. First, we note
that our problem of interest is an expected maximum flow
problem whose demands and capacities we denote by D̃i =

4Di −41−�5�5+ and C̃ = ��. This is an unbalanced prob-
lem because E6D̃i7¾ C̃ for � ∈ 60117. For the dedicated and
the fully flexible systems, it is easy to see that ĥD4n54�5=

E6
∑n

i=1 min4C̃1 D̃i57 and ĥF4n54�5 = E6min4nC̃1
∑n

i=1 D̃i57.
It follows that

ACE4d1�5= lim
n→�

ĥCd4n5
4�5−nC̃+nE64C̃−D̃i5

+7

nE64C̃−D̃i5
+7−O4

√
n5

=
E64C̃−D̃i5

+7−C̃+limn→�41/n5ĥCd4n5
4�5

E64C̃−D̃i5
+7

0 (2)

Hence, our problem reduces to finding limn→�41/n5 ·

ĥCd4n5
4�5. Unlike Chou et al. (2010b), we delete from the

d-chain the links connecting the first d − 1 facility nodes
with product nodes numbered higher than the facility node.
Note that facilities d, d+1, and so on can still produce the
same d products as before in the d-chain. The result is the
following d-path:

Pd4n5=Cd4n5\84i1j52 j=110001d−13

i=n−d+1+j10001n90

Figure 2 shows some d-paths and their corresponding
d-chains. Moreover, it is easy to see that

0 ¶ ĥCd4n5
4�5− ĥPd4n5

4�5¶ d4d− 15
2

· C̃0

Hence, we have the following lemma, which allows us
to focus on Pd4n5.

Lemma 3. For finite d,

lim
n→�

ĥPd4n5
4�5

n
= lim

n→�

ĥCd4n5
4�5

n
0
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Figure 2. Examples of d-paths and d-chains.

Products Plants Products Plants Products Plants Products Plants Products Plants Products Plants

° 2(n) £ 2(n) ° 3(n) £ 3(n) ° 4(n) £ 4(n)≈ ≈ ≈

We let the arc linking demand node i to supply node i
denote the “primary” arc, and the arcs linking demand node
i to supply node j �= i the “secondary” arcs. As can be seen
in Figure 2, every plant i in �d�n� can only serve prod-
ucts i� i − 1� � � � �max�1� i − d + 1�. This implies that the
maximum flow on �d�n� can be determined in a greedy
fashion. First, satisfy demand D̃1 of product 1 using the
primary capacity in supply node 1, then if necessary, use
supply node 2, and so on, in that order up to a maximum
total capacity of dC̃ units. Next, move on to the next prod-
uct, and based on the capacity left over from the previous
product, add C̃ units more from a new supply node, and
consume again according to lowest supply node number.
The amount of maximum flow obtained in this greedy fash-
ion is a random variable, depending on the values of D̃i.

To present this greedy approach formally and to facilitate
our analysis, we need to keep track of Ti, which denotes the
amount of leftover capacity for product i+1 prior to adding
C̃ units from the new supply node. At the beginning, T0 =

�d− 1�C̃. As we move to the next product, Ti is updated
as follows: Ti = min��d − 1�C̃� �Ti−1 + C̃ − D̃i�

+�. Alter-
natively, we can keep track of Si = �d − 1�C̃ − Ti, which
begins at S0 = 0 and updates accordingly: Si = min��Si−1+

D̃i − C̃�+� �d − 1�C̃�. Next, we let TF denote total max-
imum flow. Similarly, let TE =

∑n
i=1 D̃i − TF denote the

difference between total demand and total flow, i.e., total
excess or unmet demand. This implies that

h̄��n���1−��	1���D�	�= TF =

n
∑

i=1

D̃i − TE� (3)

We account for TF by keeping track of TE as we assign
capacity to demand. Consider step i of the greedy approach,
wherein Si−1 is known before D̃i is observed. The greedy
allocation implies TE = TE + ��Si−1 + D̃i − C̃�+ −

�d− 1�C̃�+� We summarize the greedy approach as follows.

Algorithm 1 (Greedy approach)
1. Set i = 1, S0 = 0, T0 = �d− 1�C̃, and TE = 0.
2. Observe D̃i.

If D̃i > C̃,
then Si = min�Si−1 + D̃i − C̃� �d− 1�C̃�,
and TE = TE+max�Si−1 + D̃i − C̃ − �d− 1�C̃�0�.

If D̃i < C̃,
then Si = max�Si−1 + D̃i − C̃�0�,
and TE = TE.

3. If i= n− 1, then STOP.
TE = TE+max�Sn−1 + D̃n − �d− 1�C̃�0�. Return
TE as the minimum excess. Otherwise, i = i+ 1
and go to Step 2.

Observe that �Si i = 0�1�2� � � �� behaves like a gener-
alized random walk, with random step size Xi

�
= D̃i − C̃

and boundaries 0 and �d − 1�C̃. The value TE grows
in Step 2 only when D̃i − Ti−1 > C̃; that is, when Si =

min�Si−1 + D̃i − C̃� �d − 1�C̃� = �d − 1�C̃. We call this
quantity (Xi − Ti−1) the level of overshoot at the upper
boundary. Conversely, when D̃i < C̃, it is possible that
Si−1 + D̃i − C̃ < 0. We call this amount (−Si−1 − Xi) the
level of overshoot at the lower boundary. Note that this
overshoot at the lower boundary does not add to TE in the
greedy algorithm.

The random walk starts at S0 = 0, the lower boundary.
It gets trapped at the lower boundary whenever Xi � 0,
and escapes only when Xi > 0. An interesting phenomenon
happens when the random walk hits the upper boundary—
it gets trapped at the upper boundary whenever Xi � 0, and
escapes only when Xi < 0, the exact opposite.

Now, observe that �Ti i= 0�1�2� � � �� also behaves like a
similar random walk. In fact, it is the reflection of �Si i=
0�1�2� � � �� across the horizontal axis at ��d − 1�/2�C̃.
That is, its random step size is X ′

i
�
= −Xi = C̃−D̃i, and TE

grows whenever there is an overshoot in the lower bound-
ary and not when the overshoot is at the upper boundary.
Unlike �Si i = 0�1�2� � � ��, �Ti i = 0�1�2� � � �� begins at
its upper boundary T0 = �d − 1�C̃. It gets trapped in the
upper boundary whenever X ′

i � 0, and escapes only when
X ′

i < 0. When it hits the lower boundary, it gets trapped
there whenever X ′

i � 0, and escapes only when X ′
i > 0.
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To stay consistent with the literature (Chou et al.
2010b), we define a new random walk 8Wi1 i = 011121 0 0 09
that alternates between 8Si1 i = 011121 0 0 09 and 8Ti1 i =

011121 0 0 09. This new random walk begins at W0 = S0 = 0
and upon hitting its upper boundary, switches to 8Ti1 i =

011121 0 0 09. At this point, Wi = Ti = 0 and upon hitting
its upper boundary, switches back to 8Si1 i = 011121 0 0 09.
To model the switching times, we define the following stop-
ping times:

�4j5
ã
=

{

inf8n2 Sn+
∑j−1

k=0 �4k5
= 4d− 15C̃91 if j is odd

inf8n2 Tn+
∑j−1

k=0 �4k5
= 4d− 15C̃91 if j is even

where �405= 0. That is,

Wi =

{

Si1 if �4j − 15 < i¶ �4j5 and j is odd

Ti1 if �4j − 15 < i¶ �4j5 and j is even1

∀ i = 011121 0 0 0 0

Interestingly, 8Wi1 i = 011121 0 0 09 turns out to be an alter-
nating regenerative process. Because all alternating cycles
are probabilistically identical, it suffices to examine just
one pair of odd and even cycles with the following charac-
teristics.

• Cycle duration � (respectively, �̂): the length of any
odd (respectively, even) regenerative cycle:

�
ã
= inf8n2 Sn = 4d− 15C̃1 n¾ 11 S0 = 091

�̂
ã
= inf8n2 T�415+n = 4d− 15C̃1 n¾ 11 T�415 = 090

• Cycle overshot � (respectively, �̂): the amount of
overshoots at both the lower and upper boundaries in any
odd (respectively, even) cycle:

�
ã
=

�
∑

i=1

44Si−Si−1 −Xi5�4Xi<05+4Si−1 +Xi−Si5�4Xi>0551

�̂
ã
=

�415+�̂
∑

i=�415+1

44Ti−Ti−1 −X ′

i5�4X
′

i <05

+4Ti−1 +X ′

i −Ti5�4X
′

i >0551

where �4 · 5 denote the indicator function.
Note that � can be decomposed into two components,
namely, upper and lower overshoots, such that � = �L+�U

(respectively, �̂ = �̂L + �̂U ), where

�L
ã
=

�
∑

i=1

44Si − Si−1 −Xi5�4Xi < 0551

�̂L
ã
=

�415+�̂
∑

i=�415+1

44Ti − Ti−1 −X ′

i5�4X
′

i < 0551

and

�U
ã
=

�
∑

i=1

44Si−1 +Xi − Si5�4Xi > 0551

�̂U
ã
=

�415+�̂
∑

i=�415+1

44Ti−1 +X ′

i − Ti5�4X
′

i > 0550

Consider an alternating renewal process 8N 4t52 t ¾ 09,
having inter-arrival times �4j5 such that �4j5 ∼ � if j is
odd and �4j5 ∼ �̂ if j is even. The reward Rj obtained at
the jth renewal is �U if j is odd, and is �̂L if j is even.
Note that from (3),

n
∑

i=1

D̃i −

N4n5+1
∑

j=1

Rj ¶ h̄G4n5441 −�5�11�1D1�5

¶
n
∑

i=1

D̃i −

N4n5
∑

j=1

Rj 0 (4)

Because Wi toggles alternately between Si and Ti and by
the renewal reward theorem,

lim
n→�

E6
∑N4n5

j=1 Rj 7

n
=

E6�U 7+ E6�̂L7

E6�7+ E6�̂7
0

Hence, taking expectation and limit in (4), we obtain

lim
n2=�

ĥPd4n5
4�5

n
= E6D̃i7−

E6�U 7+ E6�̂L7

E6�7+ E6�̂7
0

Substituting into (2), we arrive at the following result.

Proposition 4. For a d-chain with postponement level �,
such that 2 ¶ d¶ n and � ∈ 60117, its asymptotic chaining
efficiency can be computed as follows:

ACE4d1�5=
1

E64C̃ − D̃i5
+7

·

(

E64D̃i − C̃5+7−
E6�U 7+ E6�̂L7

E6�7+ E6�̂7

)

0

The next step is to find a method that can efficiently
calculate the values for E6�71E6�̂71E6�U 7, and E6�̂L7. This
can be easily done by solving a set of linear systems of
equations. We refer the readers to Appendix B for details.

As mentioned earlier, the supermodularity property used
in Simchi-Levi and Wei (2012) to characterize the per-
formance of the 2-chain no longer holds for the 3-chain.
Hence, to our best knowledge, this is the first analyti-
cal result that characterizes the performance of d-chains
for d¾ 3. With this result, we can now examine how
ACE4d1�5 behaves as d and � change. To illustrate, we
suppose that demand for each product follows a normal
distribution with mean 100 units and standard deviation
30 units,3 while capacity for each plant is 100 units. Fig-
ure 3 summarizes the asymptotic chaining efficiency for
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Figure 3. Asymptotic chaining efficiency vs. level of
production postponement.
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various levels of production postponement (� = 0�1�0�2�
� � � �0�9�1�0) and partial flexibility (2-chain, 3-chain,
4-chain, 5-chain, and full flexibility).

Under full postponement, we already expect the 2-chain
to perform quite well providing 72% of the benefits of
full flexibility even for large production systems. However,
under 50% postponement, this number drops to only 58%.
This confirms our earlier result that the 2-chain may not be
sufficient under partial postponement. Fortunately, adding
a third layer of flexible links can restore the performance
back to 75%. Adding a fourth layer can bring some ben-
efits (ACE up from 75% to 82%) but significantly less
than the gain from 2-chain to 3-chain (from 58% to 75%).
We also see that further improvements from the fifth layer
(from 82% to 85%) and higher chains are negligible. Such
investments are no longer worthwhile, more so in the com-
mon scenario where cost of additional flexibility increases
in the amount of flexibility already installed. For various
other scenarios (normal distribution with other coefficients
of variation, and also other demand distributions, say uni-
form, etc.), we find similar results. That is, the 2-chain
incurs substantial flexibility loss in the case of partial post-
ponement, but the 3-chain recovers most of this flexibility
loss. Lastly, it is important to note that the asymptotic anal-
ysis in this section shows that the value of the 3-chain
established here is not a mere artifact of the system size.

6. The Asymmetric Case
This section’s primary objective is to investigate whether
the results obtained thus far carry over to the asymmetric
case, where product demands are no longer identically dis-
tributed and plant capacities are no longer equal. We con-
sider balanced networks where the number of products
equals the number of plants. Moreover, each plant is pri-
marily assigned to produce one product and has capacity

equal to that product’s mean demand. To achieve some
capacity sharing, the 2-chain has been gainfully employed
in previous works involving similar settings but with full
postponement (see Simchi-Levi 2010, and Simchi-Levi and
Wei 2012). Our paper examines the performance of 2-chain
and 3-chain under the asymmetric case but with partial
postponement. In addition, our second objective is to obtain
additional insights that may arise because of system asym-
metry. In particular, how does heterogeneity in demand
uncertainty affect the flexibility and production decisions?

To this end, we use the Sport Obermeyer example in
Hammond and Raman (1996) as an illustration. Table 2
shows 10 styles of women’s parkas and their respective
demand forecasts. For each style i, the demand is assumed
to be normally distributed with mean 	i given in the sec-
ond column and standard deviation �i given in the third
column. The fourth column contains the coefficient of vari-
ation, denoted by CV. Negative values are truncated at zero.

We consider a production network of 10 facilities, each
one primarily assigned to manufacture one style. Also, each
facility has enough capacity to meet the expected demand
of its primary product, i.e., Ci = 	i. For example, facil-
ity 1 mainly produces the Gail style and has a capacity
of 1,017 units. Each facility’s capacity is further divided
into two parts, namely, first-stage capacity employed before
actual demand is known, and second-stage capacity to be
employed after actual demand is known. As in earlier sec-
tions, this capacity split is determined by the postponement
level �. Although facilities have their primary style assign-
ments, it would serve the firm well if they can also produce
other styles. Although full flexibility whereby all facilities
can make all styles is most desirable, the firm may only
afford a limited amount of process flexibility. Hence, we
analyze the performance of 2-chain and 3-chain against full
flexibility under varying postponement levels.

Note that the SAA method can be used to solve the
2-stage stochastic programming problem, but it can be
time consuming and generates first-stage allocations that
are highly variable because the method is sample based.
In practice, heuristic rules are commonly used to deter-
mine this first-stage production decision. We consider two
heuristic rules, which we call (1) the mean rule, and (2) the
variance rule. To explain how they work, we denote the
first-stage allocation for style i given postponement level �
by Xi���=

∑n
j=1 xij���. Clearly, total first-stage allocation

should satisfy
∑n

i=1 Xi���= �1−��
∑n

i=1 	i. The mean rule
says that the way to allocate the total first-stage capacity
of �1 − ��

∑n
i=1 	i among the n different styles is propor-

tional to the mean values of their demands. That is, we
produce Xi��� = �1 − ��	i of style i. This is equivalent
to the allocation obtained in Proposition 2. This alloca-
tion says that even if we have full flexibility, we only use
first-stage capacity for primary production. However, this
rule ignores the different variability in demand forecast.
The variance rule tries to exploit this additional informa-
tion. It follows the common belief in the accurate response
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Table 2. Sport Obermeyer: Product demand information and first-stage allocation using variance rule.

First-stage production using variance rule

Style Mean Std. dev. CV (%) �= 001 �= 002 �= 003 �= 004 �= 005 �= 006 �= 007 �= 008 �= 009 �= 1

1 Gail 11017 194 19008 934069 852038 770006 687075 605044 512090 416063 230000 7025 0000
2 Isis 11042 323 31000 904095 767091 630086 493082 356077 202069 42041 0000 0000 0000
3 Entice 11358 248 18026 11252078 11147055 11042033 937010 831088 713058 590052 351093 67019 0000
4 Assault 21525 340 13047 21380074 21236048 21092022 11947097 11803071 11641052 11472080 11145072 755034 0000
5 Teri 11100 381 34064 938035 776069 615004 453038 291073 109098 0000 0000 0000 0000
6 Electra 21150 404 18079 11978059 11807017 11635076 11464035 11292094 11100022 899074 511009 47023 0000
7 Stephanie 11113 524 47008 890067 668034 446002 223069 1036 0000 0000 0000 0000 0000
8 Seduced 41017 556 13084 31781010 31545019 31309029 31073038 21837048 21572025 21296035 11761047 11123009 0000
9 Anita 31296 11047 31077 21851077 21407054 11963031 11519008 11074085 575040 55085 0000 0000 0000

10 Daphne 21383 697 29025 21087027 11791054 11495081 11200008 904035 571086 226000 0000 0000 0000

literature (Fisher and Raman 1996) that some styles with
high coefficient of variation ought never to be made to
stock using speculative (first-stage) capacity. This alloca-
tion rule is specified by the following formula:

Xi4�5= 4�i −�4�5�i5
+1 ∀ i = 11 0 0 0 1 n1

where

�4�5=

∑

j∈N��j −
∑

j∈S�j
∑

j∈N\S �j

and

N 2= 81121 0 0 0 1 n9 and

S 2=

{

i

∣

∣

∣

∣

�i <

∑

j∈N��j
∑

j∈N �j

�j1 i = 11 0 0 0 1 n
}

0

This rule is similar to Theorem 2 in Fisher and Raman
(1996) with a modification that requires first-stage allo-
cation Xi4�5 to be nonnegative. For our 10-style exam-
ple in Sport Obermeyer, the first-stage allocation values
for various � levels are given in columns 6 to 15 in
Table 2. Indeed, the numbers show that as first-stage capac-
ity becomes less (� increases), styles with the highest CVs
will be the first ones to receive zero first-stage allocation.
For example, the Stephanie style is the first to get zero allo-
cation at � = 006, followed by the Teri style at � = 007,
and so on.

For the first part of our numerical study, we apply
the sample average approximation method used in §4.2.
We generate K = 11000 demand scenarios4 denoted by Dk =

4Dk
11D

k
21 0 0 0 1D

k
105 for k = 1121 0 0 0 1K such that Dk

i is a ran-
dom draw from N4�i1�i5 with negative values truncated at
zero. We then replace � in the third constraint of the linear
program (P3) with �i, set co = cu = 1, n= 10, K = 11000,
and solve the linear program to obtain the expected mis-
match costs for Cd4n5, for d = 11213 and 10. The results
are shown in Figure 4(a). We observe that similar to the
symmetric case, there is substantial flexibility loss between
the 2-chain and full flexibility particularly at intermedi-
ate postponement levels. Moreover, the 3-chain once again

recovers most of this flexibility loss. This implies that our
3-chain theory carries over to the asymmetric case.

For the second part of our numerical study, we relax the
assumption that the flexibility structure must be the same
in both stages. Specifically, we now consider full flexibil-
ity in the first stage regardless of the second-stage struc-
ture. This is typically the case for fashion manufacturers
like Sport Obermeyer whose first-stage production is car-
ried out in one or two big manufacturing facilities that can
produce all styles. However, the second-stage production is
usually outsourced to smaller manufacturers, each of which
specializes in a limited range of styles. That said, we can
again use the SAA method and (P3), but we must remove
the constraint xij = 01 ∀ 4i1 j5 y G4n5. The results, shown
in Figure 4(d), once again corroborate our 3-chain theory.

The variance rule used in the literature often assumed
that the reserved (second-stage) capacity is fully flexible.
As we shall soon see, when there is limited or no flexi-
bility in the second stage, the variance rule may no longer
perform well. To continue our numerical study, we use the
sampled demand scenarios Dk to obtain the expected mis-
match cost values for various second-stage flexibility struc-
tures and postponement levels using the two heuristic rules.
The results are shown in Figures 4(b) and (c). We make two
observations here. First, the 3-chain theory is repeatedly
supported. Second and more interestingly, the variance rule
performs poorly when second-stage capacity is dedicated.
This is because the variance rule creates unfair first-stage
allocation, leading to imbalance in the second stage, which
the absence of flexibility cannot handle.

Note that under the symmetric setting, the mean rule and
the variance rule are equivalent. But clearly for the asym-
metric case, the two rules prescribe very different first-stage
allocations. Hence, we compare the mean rule and the vari-
ance rule vis-a-vis the SAA method and the first-best solu-
tion (full flexibility in both stages but under same postpone-
ment level) as shown in Figure 5. Interestingly, the variance
rule does not always help close the gap between the mean
rule and the SAA method. In fact, the variance rule even
worsens the performance for the dedicated structure and
brings little benefit for the 2-chain. This poor performance
will be further magnified when we restore the assumption
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Figure 4. Expected mismatch cost vs. postponement level for asymmetric case.
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that flexibility structure in both stages must be the same,
because the mean rule requires no flexibility in the first
stage whereas the variance rule requires full flexibility.

Meanwhile, for 3-chain and full flexibility, the variance
rule performs extremely well as it almost if not completely
closes the gap between the mean rule and the SAA method.
That this is the case for full flexibility is not surprising
because the variance rule is optimal when there is full flex-
ibility in both stages (see Theorem 2 in Fisher and Raman
1996). What is more interesting is that the 3-chain can
already capture most of this optimal performance, which
the 2-chain cannot. This provides us another useful insight:
that the benefit of variance information is largest when the
structure is fully flexible and most of this benefit can be
achieved by employing the 3-chain.

Finally, we discuss how expected mismatch cost is influ-
enced by the interaction of all three dimensions: (1) flex-
ibility, (2) postponement, and (3) variance information.
To this end, we illustrate using Figure 6, together with
parts of Figure 5. In Figure 5(a), if there is no flexibil-
ity at all (dedicated system), then even full postponement
with the use of the variance rule performs very poorly

(expected cost close to 2,000). In Figures 5(d) and 6, if
there is close to no postponement (�= 0�1), then even full
flexibility with the use of the variance rule also performs
very poorly (expected cost exceeding 2,000). In Figure 6, if
variance information is not used (mean rule is used), then
limited flexibility (2-chain) with sufficient postponement
(�= 0�5) can provide reasonable but not near-optimal per-
formance (expected cost close to 1,000). Moreover, 3-chain
with variance rule outperforms full flexibility with mean
rule for � > 0�3, but the same cannot be said for 2-chain
with variance rule compared to 3-chain with mean rule.
Hence, all three dimensions are critical and must be prop-
erly planned to achieve low expected mismatch cost with-
out overinvesting.

7. Conclusion
In this paper, we study both process flexibility and produc-
tion postponement and their effectiveness in mitigating the
uncertainty and complexity prevalent in global production
and consumption networks. Because the first-best solution
of full flexibility and full postponement is very expensive,
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Figure 5. Value of variance information for various flexibility and postponement levels.
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Figure 6. Expected mismatch cost as function of post-
ponement, flexibility, and variance infor-
mation.
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one approximate solution suggested in the literature is full
postponement with partial flexibility. The performance of
this solution is almost as good as the first-best solution but
incurs only a small fraction of the cost. In this study, we
examine if other solutions can do the same. In particular,

we consider the effect of partial postponement on the ben-
efits and design of process flexibility.

To this end, we develop a multi-item newsvendor model
with second-stage supply and partial capacity sharing in
order to minimize the expected mismatch cost. Subse-
quently, we define optimality loss of any solution as the gap
between that solution and the first-best solution. This loss
is further broken down into postponement loss and flexi-
bility loss, which are defined as the losses due to partial
postponement and partial flexibility, respectively. Our first
result shows that full flexibility with low partial postpone-
ment (� � 1) could not attain the same order of perfor-
mance as full postponement with partial flexibility. How-
ever, if a substantial amount (say �� 0�5) of capacity can
be postponed, then full flexibility with partial postpone-
ment can also approximate the first-best solution, albeit at
a much higher installation cost.

Having established that the flexibility losses of partial
flexibility (2-chain) at full postponement and no postpone-
ment are both negligible or zero, we discover that these
results no longer hold when postponement is partial. For
example, in a 10× 10 system, we report that for postpone-
ment levels between 10% and 50%, the flexibility loss is
quite sizable, ranging from 20% to 30%. In these scenarios,
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we find that the 3-chain not only recovers most of the flex-
ibility loss, but sometimes, even parts of the postponement
loss. In the 10 × 10 example, the 3-chain with 50% post-
ponement already restores the flexibility loss to the same
level as 2-chain with full postponement. Furthermore, we
extend the random walk approach in Chou et al. (2010b)
to obtain the asymptotic chaining efficiency of any d-chain
at arbitrary postponement levels. Using this method, we
demonstrate that the value of the 3-chain we established
for small systems is valid even for extremely large systems.
Moreover, further flexibility upgrades (e.g., fourth or fifth
chain) can no longer produce as much benefit and usually
incurs even higher flexibility installation costs.

In conclusion, all our results strongly suggest that the
3-chain brings substantial value in the face of partial post-
ponement. As is well known in the community, the 2-chain
in flexible production systems proves effective because it
takes care of baseline uncertainty in the product demand.
We have, in this paper, extended that theory by providing
evidence of the value of the 3-chain, that it can be used
to compensate for the flexibility loss brought about by lost
postponement. Finally, that chains higher than the 3-chain
are unnecessary also supports the belief that even for large
systems with partial postponement, one still only needs a
sparse structure (3-chain) to achieve most of the benefits of
the first-best solution.

Appendix A. Proof of Proposition 3

Define ĥG4n54�1C5= E6h̃G4n54�1D1C57 and

h̃G4n54�1D1C5= max
y

n
∑

i=1

n
∑

j=1

yij

s.t.
n
∑

j=1

yij ¶ 4Di − 41 −�5C5+ ∀ i = 1121 0 0 0 1 n

n
∑

i=1

yij ¶ �C ∀ j = 1121 0 0 0 1 n

yij ¾ 0 ∀ i1 j = 1121 0 0 0 1 n

yij = 0 ∀ 4i1 j5yG4n5

so that LF 4C24n51�1C5= cu6ĥF4n54�1C5− ĥC24n5
4�1C57.

We want to show that

¡

¡�
LF 4C24n511−1C5

= cu

[

¡

¡�
ĥF4n541

−1C5−
¡

¡�
ĥC24n5

41−1C5

]

< 00

To this end, we obtain

¡

¡�
ĥG4n541

−1C5

= lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C57

�

= lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C5 �Di¾�C1∀ i7

�

·P8Di¾�C1∀ i9

+ lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C5 �∃ i2 Di<�C7

�

·41−P8Di¾�C1∀ i95

= lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C5 �Di¾�C1∀ i7

�

· lim
�→0+

P8Di¾�C1∀ i9

+ lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C5 �∃ i2 Di<�C7

�

· lim
�→0+

41−P8Di¾�C1∀ i95

= lim
�→0+

E6h̃G4n5411D1C5−h̃G4n541−�1D1C5 �Di¾�C1∀ i7

�
0

The last equation is due to demand nonnegativity, hence
lim�→0+ P8Di ¾ �C1 ∀ i9= 1. It follows that for full flexibility, we
have

¡

¡�
ĥF4n541

−1C5

= lim
�→0+

E6h̃F4n5411D1C5−h̃F4n541−�1D1C5 �Di¾�C1∀ i7

�

= lim
�→0+

1
�

(

E
[

min
( n
∑

i=1

Di1nC

)

−min
( n
∑

i=1

4Di−�C51n41−�5C5

∣

∣

∣

∣

Di¾�C1∀ i

])

= lim
�→0+

1
�

(

E
[

min
( n
∑

i=1

Di1nC

)

−min
( n
∑

i=1

Di1nC

)

+n�C

∣

∣

∣

∣

Di¾�C1∀ i

])

=nC0

For the 2-chain, we let d be a given demand realization such
that di ¾ �C, ∀ i, and yij4�1d1C5 and y∗

ij4�1d1C5 be a feasible
solution and an optimal solution, respectively, for h̃C4n54�1d1C5.
Since yii411d1C5 = y∗

ii41 − �1d1C5 + �C, ∀ i and yij411d1C5 =

y∗
ij41 − �1d1C5, ∀ i 6= j is a feasible solution to h̃C4n5411d1C5, it

follows that h̃C4n5411d1C5− h̃C4n541 − �1d1C5¾ n�C.
To rule out E6h̃C4n5411D1C5 − h̃C4n541 − �1D1C5 � Di ¾

�C1 ∀ i7= n�C, it can be verified that there exists a demand real-
ization d ¾ �C1 such that dk + dk+1 + dk+2 + dk+3 ¶ 4C but
dk + dk+1 > 3C − �C for some k. In this case, an increase in �
from 1−� to 1 will result in an increase in h̃C4n54 · 5 that is strictly
greater than n�C, i.e.,

h̃C4n5411d1C5− h̃C4n541 − �1d1C5 > n�C0

It follows that

¡

¡�
ĥC4n541

−1C5

= lim
�→0+

E6h̃C4n5411D1C5−h̃C4n541−�1D1C5 �Di¾�C1 ∀ i7

�

> lim
�→0+

n�C

�
=nC0
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We have shown 4¡/¡�5LF 4C24n511−1C5 < 0. Since
LF 4C24n5111C5 > 0 = LF 4C24n5101C5, it suffices to check
if LF 4C24n51�1C5 > LF 4C24n5111C5 for some � ∈ 40115.
Because 4¡/¡�5LF 4C24n511−1C5 < 0, the result follows. �

Appendix B. Linear Systems for Calculating
ACE 4d1�5

In this section, we present a method that can efficiently cal-
culate the values for E6�71E6�̂71E6�U 7, and E6�̂L7. To this
end, we assume that for each i, the support of D̃i lies
in 84j/N5 · 41 + �5� � j = 011121 0 0 0 1N 9, where N ¾ 1
denotes the level of discretization on the demand distribu-
tion. Moreover, we let pj = P4D̃i = 4j/N5 · 41 + �5�51

∀ j = 011121 0 0 0 1N − 1, pN = P4D̃i ¾ 41 + �5�5, and
pj = 01 ∀ j = N + 11N + 21 0 0 0 0 On the other hand, to represent
capacity by the same discretization level, we rewrite capacity as
C̃ = �� = �4�N5/41 + �5�. That is, there are C̃ = �4�N5/41 +

�5� units of capacity in each plant just as there are N +1 possible
demand states for each product.

Next, we define �x (respectively, �̂x) as the stopping time if the
random walk 8Ŝi1 i = 011121 0 0 09 is currently in an odd (respec-
tively, even) cycle at a state x. We also define �x (respectively,
�̂x) as the overshoot at the upper (respectively, lower) boundary
if the random walk is currently in an odd (respectively, even)
cycle at a state x. The value of the state x can range from 0
to 4d− 15C̃ − 1. Hence, we further define the following 4d −

15C̃ × 1 vectors v, v̂, w, ŵ to collect the expected values E6�x7,
E6�̂x7, E6�x7, E6�̂x7, respectively, for all x. That is, vx+1 = E6�x7,
v̂x+1 = E6�̂x7, wx+1 = E6�x7, and ŵx+1 = E6�̂x7, for x = 0111 0 0 0 1
4d − 15C̃ − 1. Most importantly, for each of these four vectors,
we can condition on the next move of the random walk starting
at state x and obtain a system of linear equations. Solving these
systems gives us the values of the four vectors. Hence, we arrive
at the following result.

Proposition 5. For a d-chain with postponement level �, such
that 2 ¶ d ¶ n and � ∈ 60117, the values of E6�7, E6�̂7, E6�U 7,
and E6�̂L7 can be obtained by solving the following systems of
linear equations:

v−Mv = 11 w−Mw = r1 v̂− M̂v̂ = 11 ŵ− M̂ŵ = r̂1

where M, M̂ are 4d− 15C̃ × 4d− 15C̃ matrices, v, w, v̂, ŵ, r, r̂
are 4d− 15C̃ × 1 vectors, and

Mk1l =











































pC̃+l−k1 ∀k=max4C̃−N +l11510001

min4C̃+l14d−15C̃51

∀ l=2100014d−15C̃1
C̃+1−k
∑

j=0

pj 1 ∀k=11210001C̃+11 l=11

01 otherwise3

(B1)

M̂k1l =











































pC̃+k−l1 ∀k=max4−C̃+l11510001

min4N −C̃+l14d−15C̃51

∀ l=2100014d−15C̃
N
∑

j=C̃−1+k

pj 1 ∀k=11210001N −C̃+11l=11

01 otherwise3

(B2)

rk =























N
∑

j=dC̃+2−k

4j−dC̃−1+k5pj 1

∀k=max4dC̃+2−N115100014d−15C̃1

01 otherwise3

(B3)

r̂k =























N
∑

j=C̃+k

4j−C̃+1−k5pj 1

∀k=110001min4N −C̃14d−15C̃51

01 otherwise3

(B4)

and assigning E6�7= v1, E6�̂7= v̂1, E6�U 7=w1, and E6�̂L7= ŵ1.

Endnotes
1. http://www.interbrand.com.
2. It is important to note that although the expected shortfall mini-
mization (equivalently, expected flow maximization) in the second
stage of this model may appear to be a single period decision,
the model can in fact be used for the expected performance over
multiple independent periods.
3. Note that Corollary 1 in Chou et al. (2010b) still holds for
the d-chain where d > 2 and any postponement level � ∈ 40115,
implying the invariance of ACE4d1�5 over the scale of demand.
Hence, the results presented here are valid for any demand distri-
bution that is normal with coefficient of variation equal to 0.30.
4. Based on our numerical tests, we obtain similar patterns for
number of demand scenarios larger than 1,000.
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