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W e study a minimum total commitment (MTC) contract embedded in a finite-horizon periodic-review inventory
system. Under this contract, the buyer commits to purchase a minimum quantity of a single product from the

supplier over the entire planning horizon. We consider nonstationary demand and per-unit cost, discount factor, and non-
zero setup cost. Because the formulations used in existing literature are unable to handle our setting, we develop a new
formulation based on a state transformation technique using unsold commitment instead of unbought commitment as
state variable. We first revisit the zero setup cost case and show that the optimal ordering policy is an unsold-commit-
ment-dependent base-stock policy. We also provide a simpler proof of the optimality of the dual base-stock policy. We
then study the nonzero setup cost case and prove a new result, that the optimal solution is an unsold-commitment-depen-
dent (s, S) policy. We further propose two heuristic policies, which numerical tests show to perform very well. We also
discuss two extensions to show the generality of our method’s effectiveness. Finally, we use our results to examine the
effect of different contract terms such as duration, lead time, and commitment on buyer’s cost. We also compare total sup-
ply chain profits under periodic commitment, MTC, and no commitment.
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1. Introduction

The procurement function has been identified as a
key driver for competitiveness and the design of sup-
ply contracts has become an important area of study.
At its core, a supply contract is a binding mechanism
to properly allocate risks between the upstream sup-
plier and the downstream buyer. The question that
supply contracts address is who should bear the risk
of producing ahead of time and keeping inventories
of raw materials, components, and finished goods. On
one hand, the supplier would prefer stability whereby
the buyer is required to place an order ahead of time,
pay, and take ownership of the goods. On the other
hand, buyers like the flexibility to place orders and
then change these orders as they observe more infor-
mation about demand, hence delaying ownership to
the last minute. Supply contracts are put in place pre-
cisely to strike a balance between upstream stability
and downstream flexibility. For example, by initiating

a so-called minimum total commitment (MTC) contract
with its supplier, Stanley Black & Decker Co. Ltd is able
to cut lead times from 4 weeks to 1 week (Zou 2012).
This provides upstream stability because the supplier
is more assured of demand and hence can allocate
capacity and associated resources with confidence. In
return, the supplier is willing to provide downstream
flexibility in the form of shorter lead times. Moreover,
MTC contracts have also been observed in other indus-
tries such as electronics (Campbell 2012), aviation
(Maxon 2013), pharmaceutical (Business Wire 2013),
and mining (Tally Metal Sales 2014).
In this study, we examine this class of supply con-

tracts called MTC contracts. Specifically, this is a con-
tract made in advance under which the buyer must
order at least a certain number of units from the sup-
plier over the contract period (e.g., 1 year). In
exchange, the supplier agrees to sell the product at a
predetermined (usually discounted) price or with a
predetermined (usually shorter) lead time. The MTC
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contract provides flexibility to the buyer to decide
when to consume each unit of the total commitment,
as opposed to a forward contract where order quanti-
ties for all replenishment periods are fixed in advance.
It also reduces uncertainty for the supplier who now
faces less downside risk for total demand during the
contract period, providing more incentive to invest in
capacity. In this study, we consider a periodic review
inventory model and study the optimal ordering pol-
icy when there is a MTC to be fulfilled by the end of
the planning horizon (i.e., the contract period). The
results of our analysis can then be used to evaluate
and compare various MTC contracts with different
contract terms (e.g., duration, MTC, component cost,
lead time). In other words, our results will enable us
to make trade-offs among the various contract terms
toward better contract design.
Production-inventory models incorporating supply

contracts with various forms of quantity commit-
ments have been studied in the literature. Bassok and
Anupindi (1997) consider the MTC contract in a single
supplier, single buyer supply chain. In this supply
chain, the buyer must order up to a minimum total
order quantity by the end of a finite contract horizon.
The optimal policy is characterized by a dual base-
stock policy with two critical order-up-to levels. The
two critical levels are obtained from the correspond-
ing finite horizon and a single-period standard news-
vendor problem with no commitment, but with
discounted price. However, their model only consid-
ers stationary demand, stationary per-unit cost, no
discount factor, and zero setup cost. Chen and Krass
(2001) extend Bassok and Anupindi’s (1997) work to
the case where demand is nonstationary and per-unit
cost is still stationary but different beyond the MTC.
They show that the optimal ordering policy remains
the dual base-stock type. Anupindi and Bassok (1998)
also extend Bassok and Anupindi (1997) to the multi-
product setting. In this contract, the MTC is specified
in terms of total amount of dollars to be purchased by
the end of the contract period. Feng and Sethi (2010)
examine the interaction between supply price uncer-
tainty and demand uncertainty using different pro-
curement options such as long-term price-only
contracts, capacity reservation contracts, and spot
market purchases. For the second type, they also
study reserved overall capacity, which is an upper
bound on total order quantity. Peng et al. (2012) also
consider overall capacity reservation in the three-
layer contract negotiation process they modeled for
Intel. In the execution layer, they investigate a
dynamic dual-source capacity expansion problem
with total capacity constraint over the entire planning
horizon. Due to problem complexity, they utilize a
heuristic to solve this layer which is then used to
analyze the other two layers. Feng et al. (2013) study

a three-tier supply chain motivated by a case study in
the Oriented Strand Board (OSB) industry, where a
manufacturer contracts with both downstream cus-
tomers and upstream suppliers. While they consider
periodic commitment for downstream contracts, they
use MTC contracts upstream. The focus of their paper
is not to characterize the optimal policy but to arrive
at numerical solutions (e.g., using Sampling Approxi-
mation Approach).
There have been many justifications for purchase

commitments in supply contracts in the literature.
The model of Anupindi and Akella (1993) is among
the first of its kind: the buyer agrees to accept delivery
of a fixed quantity of goods in each period of the
contract duration, whereas the buyer faces uncertain
periodic demand. While the supplier delivers the pre-
contracted quantity immediately in each period,
additional units might be shipped with positive lead-
times. Henig et al. (1997) consider a supply contract over
a finite horizon whereby a minimum order quantity is
imposed on the buyer in each period at a predeter-
mined (and prepaid) cost. Replenishments in excess
of the minimum quantity incur additional costs. They
find that the optimal ordering policy has two critical
levels and there is a range of inventory levels for
which the quantity ordered equals the contract vol-
ume. Moinzadeh and Nahmias (2000) consider a
multi-period contractual agreement between buyer
and seller in which Q units are delivered to the buyer
at regular time intervals. Facing uncertain market
demand, the buyer has the option of adjusting the
delivery quantity upwards just prior to a delivery, but
must pay a premium to do so. They also show that
the fixed delivery contract results in lower variance of
orders to the seller. Hence, such a contract serves as a
risk-sharing mechanism. Note, however, that the
above works assume periodic commitment, that is, a
purchase commitment in each period (or interval).
That said, for further justification on the use of pur-
chase commitments, the reader is encouraged to see
Anupindi and Bassok (1999) and Tsay et al. (1999).
There are a number of other works on supply con-

tracts involving some form of flexible commitment or
minimum order quantity. Tsay and Lovejoy (1999)
consider a quantity flexibility contract which stipu-
lates a maximum percentage revision allowed for the
order quantity in each period over a finite planning
horizon. To solve the problem, the authors use a heu-
ristic approach to transform the original stochastic
problem into a deterministic one. Urban (2000)
models supply contracts with fixed and stationary
periodical commitment and limited flexibility to
change the order quantity at a cost to the buyer. The
multiple newsvendor periods are connected by their
stationary (hence common) commitment quantity. He
then provides a solution methodology to solve the

Please Cite this article in press as: Yuan Q., et al. Unsold Versus Unbought Commitment: Minimum Total Commitment Contracts with
Nonzero Setup Costs. Production and Operations Management (2015), doi: 10.1111/poms.12364

Yuan, Chua, Liu, and Chen: Unsold Versus Unbought Commitment
2 Production and Operations Management 0(0), pp. 1–18, © 2015 Production and Operations Management Society

info:doi/10.1111/poms.12364


problem. Sethi et al. (2004) study quantity flexibility
contracts with demand forecast updating and avail-
ability of a spot market. They characterize the optimal
ordering policy and discuss the impact of forecast
quality and degree of contract flexibility on the opti-
mal decisions. Martinez-de-Albeniz and Simchi-Levi
(2005) use a portfolio approach to show that a quan-
tity flexibility contract is equivalent to a combination
of a forward buy contract and an option contract.
Ben-Tal et al. (2005) analyze the optimal replenish-
ment decisions under flexible commitments contracts
using the robust optimization approach where uncer-
tain demand is only known to reside in some uncer-
tainty set. Altintas et al. (2008) consider a supply
contract that offers the buyer an all-units quantity dis-
count. They study the optimal ordering policy for the
buyer and provide insights to the supplier on how to
set effective discount parameters. Bassok and Anup-
indi (2008) address rolling horizon flexibility contracts
whereby at the beginning of the horizon, the buyer
commits requirements for components for each per-
iod into the future. Meanwhile, the supplier provides
limited flexibility to the buyer to adjust the current
order and future commitments in a rolling horizon
manner. They propose two heuristics to obtain good
procurement decisions for the buyer. Scheller-Wolf
and Tayur (2009) study not only minimum order
quantities but also order capacities in each period,
together referred to as order bands. They use infini-
tesimal perturbation analysis to optimize the class of
base-stock policies and show that using order bands
is an effective risk-sharing mechanism. Lian and
Deshmukh (2009) examine a supply contract under
which the buyer receives discounts for committing to
purchase in advance such that the further in advance
the commitment is made, the larger the discount.
They obtain the optimal ordering policy for this con-
tract over a rolling horizon with demand forecast
updating. Similar to our problem, the above papers
consider some form of flexible commitment or mini-
mum order quantity in a multi-period setting. How-
ever, they only consider periodic commitments or
minimum quantities per period while our problem
imposes a minimum amount on the total replenish-
ment over the entire contract duration.
Another stream of related research looks at one-

period or two-period models involving flexible order

quantities. Eppen and Iyer (1997) study the replenish-
ment policy under a backup contract, which allows
the retailer to return a portion of its purchase to the
supplier. They derive the optimal solution and find
that backup contracts can have a substantial impact
on expected profits and may result in a higher com-
mitted quantity. Tsay (1999) models the incentives of
both the supplier and the buyer in a quantity flexibil-
ity contract. He shows that properly designing the
contract can coordinate the channel to achieve the sys-
tem-wide optimal outcome. Taylor (2001) also studies
a two-period problem where the retailer can either
order more or return part of excess stock to the sup-
plier at the beginning of the second period. Barnes-
Schuster et al. (2002) model quantity flexibility
through options for a two-period model with corre-
lated demand. They show how options can provide
flexibility for quick response to market changes and
can also coordinate the channel. More recently, Dur-
ango-Cohen and Yano (2011) study a forecast-com-
mitment contract where the buyer provides a forecast
for a future order and a guarantee to purchase a por-
tion of it, while the supplier commits to satisfy some
or all of the forecast. The supplier pays penalties for
shortfalls of the commitment quantity from the fore-
cast and for shortfalls of the delivered quantity from
the buyer’s order quantity. However, as mentioned,
these works look at models of only one period or two
periods, and also focus on issues fundamentally dif-
ferent from ours (e.g., channel coordination).
As hinted above, our work in this study is most

closely related to Bassok and Anupindi (1997) and
Chen and Krass (2001). While these two earlier works
do not consider nonstationary per-unit cost, discount
factor, and nonzero setup cost, we will do so in this
study. Table 1 summarizes the similarities and differ-
ences among the three papers.
That said, we find that the formulations adopted in

the earlier papers cannot be extended to handle our
setting, particularly in characterizing the optimal
policy for the nonzero setup cost case. To fix this
problem, we introduce a new formulation that hinges
on an intuitive yet powerful state transformation tech-
nique. While a similar transformation technique was
used in Yuan et al. (2013), this study is the first to use
it in the MTC setting1 and to managerially interpret it
as a distinction between “unbought commitment”

Table 1 Most Closely Related Literature

Demand Per-unit cost Discount factor Setup cost

Bassok and Anupindi (1997) Stationary Stationary No Zero
Chen and Krass (2001) Nonstationary DBC* Yes† Zero
This paper Nonstationary Nonstationary Yes Nonzero

*DBC means different beyond the commitment.
†Only if per-unit cost within commitment is no greater than that beyond commitment.
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and “unsold commitment.” Unbought commitment
refers to the number of units in the MTC that are still
with the supplier, while unsold commitment refers to
the number of units in the total commitment that are
not yet sold to the customers, regardless of whether
the units are with the supplier or the buyer. The ear-
lier papers utilize unbought commitment as one of
two state variables, the other being on-hand inven-
tory. This creates a problem for the nonzero setup cost
case due to the difficulty in handling K-convexity in
multiple dimensions.
Our new formulation replaces unbought commit-

ment with unsold commitment as the state variable.
We find that while unbought commitment is depen-
dent on inventory decisions, unsold commitment only
depends on realized demands. Hence, at any period,
the unsold commitment is merely the MTC less the
cumulative demand up to that point. This property
allows us to show that the value function evolves
exogenously regardless of the inventory decisions,
and it becomes separable in the two state variables
under certain conditions. We are hence able to charac-
terize the optimal ordering policy for nonzero setup
cost, which turns out to be an unsold-commitment-
dependent (s, S) policy.
Our work makes the following contributions to the

literature. We first introduce the notion of “unsold
commitment” in the MTC setting. We demonstrate
how our new formulation works in the case of zero
setup cost but unlike existing literature, we consider
nonstationary per-unit cost and a discount factor. To
this end, we manage to show that the optimal order-
ing policy is an unsold-commitment-dependent base-
stock policy. We also provide a simpler proof of the
optimality of the dual base-stock policy. Then, we use
the new formulation to characterize the optimal
ordering policy for nonzero setup cost, which previ-
ous formulations cannot handle. We prove for the first
time the optimality of an unsold-commitment-depen-
dent (s, S) policy. We also propose two heuristic poli-
cies for the nonzero setup cost case and numerically
test their performance vis-a-vis the optimal policy.
Next, we extend our approach and analysis to two
cases; namely, per-unit cost different beyond commit-
ment and nonzero lead time. We find that the optimal
policy structures carry over to these scenarios. Finally,
we examine the effect of changing contract terms such
as contract duration, lead time, and total commitment
on the buyer’s optimal cost. We also compare total
supply chain profits under periodic commitment,
MTC and no commitment.
The remainder of this study is organized as follows.

Section 2 introduces our model formulation and
makes preparations for model analysis with some
preliminary results. We then characterize, in section
3, the optimal ordering policy for the zero setup cost

case. Section 4 presents our analysis of the optimal
ordering policy and a heuristic policy for the case of
nonzero setup cost. In section 5, we present the two
extensions. Section 6 examines buyer’s cost as con-
tract terms change, while section 7 looks into total
supply chain profits. Finally, Section 8 concludes
while omitted technical proofs can be found in the
Online Appendix.

2. Model Formulation and Preliminary
Results

In this section, we first present the basic model. Then,
we introduce the notion of “unsold commitment”
which we shall use to show an equivalent transforma-
tion of the model formulation. Finally, we present
two properties that are sufficient conditions for the
value function to be separable in the state variables.
These results will form part of the foundation of our
structural model analysis in subsequent sections.

2.1. Model Description
Consider a single-item inventory system in discrete
time embedded in a supply contract. The contract dura-
tion, which is also the planning horizon, is assumed to
be finite with T periods. At the beginning of the plan-
ning horizon, that is, at time t = 1, the buyer commits
to purchasing a minimum quantity Qr

1 over the entire
horizon. The firm only needs to fulfill the commitment
by the end of the planning horizon, that is, at time
t = T + 1, and may place an order of any quantity in
every period. This means that the buyer does not have
to purchase the entire committed quantity in one per-
iod. Therefore, the contract is time-flexible.
We assume that the buyer is risk neutral, thus he

aims to find a replenishment policy that minimizes
the expected value of the total discounted costs over
the planning horizon. The relevant costs include
fixed order setup cost and per-unit ordering cost, as
well as inventory (holding and backordering) costs.
In each period t, the sequence of events is as fol-
lows.

1. At the beginning of the period, the buyer
observes the initial on-hand inventory level
xt. If xt \ 0, then it means that there were
units of unmet demand from the previous
period that were backordered to this period.
The buyer also observes the remaining
“unbought commitment” Qr

t , that is, the
remaining quantity that the buyer has yet to
fulfill at the beginning of period t. If Qr

t � 0,
then it means that the MTC specified in the
contract has already been fulfilled.

2. The buyer may place an order to bring the
inventory level up to yt � xt. If yt [ xt, then
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a positive order quantity yt � xt is placed, in
which case a fixed setup cost K ≥ 0 is
incurred, as well as a per-unit cost of ct for
each unit ordered. We assume that lead time
for order delivery is zero, without loss of gen-
erality (see further discussion for nonzero
lead time in section 5, Extension II).

3. Customer demand Dt is realized. We further
assume that Dt; t ¼ 1; 2; . . . ;T, are indepen-
dent, nonnegative random variables and
bounded above by �D. Demand in the period
is fulfilled as much as possible by on-hand
inventory, and any unmet demand will be
fully backordered with a backordering cost.
Otherwise, excess inventory is carried over
with a holding cost to the next period.

4. Inventory costs are assessed and incurred.
Denote by LtðyÞ the expected one-period con-
vex inventory (holding and backordering)
cost if the buyer orders up to y in period t.
Moreover, let LtðyÞ ¼ ht � E½maxfy � Dt; 0g�
þ bt � E½maxfDt � y; 0g�; where ht and bt are
the holding cost rate and backordering cost
rate, respectively, in period t.

5. Time ages to the next period. If next period is
the end of the planning horizon, that is,
t = T + 1, then the buyer purchases all the
remaining unbought commitment as agreed
upon in the contract terms.

As in existing literature, we formulate our problem
as a dynamic program. Assume that all costs in future
periods are discounted at a rate of a ≤ 1. The total dis-
counted expected minimum cost from time t to time
T + 1 is denoted by �vtðxt;Qr

tÞ, with two state variables;
namely, inventory level xt at the beginning of period t
before ordering, and remaining unbought commit-
ment Qr

t . The buyer’s goal is to control inventory deci-
sions, yt; to minimize the total expected cost in time t.
Hence, we can write the dynamic programming
recursion for �vtðxt;Qr

tÞ as
�vtðxt;Qr

tÞ¼min
yt�xt

fKdðyt�xtÞþ ctðyt�xtÞþLtðytÞ
þaE½�vtþ1ðyt�Dt;Q

r
t �ðyt�xtÞÞ�g

ð1Þ

for t = 1, 2, 3, . . ., T, where

dðxÞ ¼ 1; if x[ 0
0; if x ¼ 0

�

Moreover, the terminal function is

�vTþ1ðxTþ1;Q
r
Tþ1Þ ¼ KdðyTþ1 � xTþ1Þ þ cTþ1ðyTþ1

� xTþ1Þ; ð2Þ

yTþ1 ¼ maxfQr
Tþ1 þ xTþ1; xTþ1; 0g: ð3Þ

The terminal condition Equation (3) ensures that all
outstanding unbought commitment Qr

Tþ1 will be ful-
filled by T + 1, and that all backorders will also be
cleared. Clearly, when Qr

Tþ1 is negative while xt is
nonnegative, there will be no ordering in T + 1.
From formulation Equation (1), we can also infer

the transition of the state variables as follows.

xtþ1 ¼ yt �Dt ð4Þ
Qr

tþ1 ¼ Qr
t � ðyt � xtÞ; ð5Þ

where the decision variable yt and states variables
Qr

t and xt appear simultaneously in the second state
transition equation. This causes difficulty in analyz-
ing the dynamic program. To remedy this problem,
we introduce a state transformation technique that
affords a reformulation of the model in Equation
(1) – (3) into something more analytically tractable.

2.2. The State Transformation Technique
We now introduce a new state variable as follows. Let

Qt ¼ Qr
t þ xt; t ¼ 1; 2; . . .;T: ð6Þ

It follows that the state transition equation (5)
becomes

Qtþ1 ¼ Qr
tþ1 þ xtþ1 ¼ ðQr

t � ðyt � xtÞÞ þ ðyt �DtÞ
¼ Qr

t þ xt �Dt ¼ Qt �Dt: ð7Þ

From here onwards, we shall refer to this new state
variable as remaining “unsold commitment,” which
is the number of units in the MTC that are not yet sold
to the customers, regardless of whether the units are
with the supplier or with the buyer. This quantity
contrasts with remaining unbought commitment
according to the following relationship.

Unsold Commitment ¼ Unbought Commitment
þOn-Hand Inventory:

More importantly, it is easy to see that at any period
t, there is a one-to-one correspondence between
ðxt;QtÞ and ðxt; Qr

tÞ: This observation allows us to
replace Qr

t with Qt in the original formulation in
Equation (1) – (3). We can, therefore, rewrite the
dynamic programming formulation as follows.

~Vtðxt;QtÞ ¼ minyt>xtfKdðyt � xtÞ þ ctðyt � xtÞ þ LtðytÞ
þ aE½~Vtþ1ðyt �Dt;Qt �DtÞ�g ð8Þ

with terminal conditions

~VTþ1ðxTþ1;QTþ1Þ ¼ KdðyTþ1 � xTþ1Þ þ cðyTþ1 � xTþ1Þ;
ð9Þ
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yTþ1 ¼ maxfQTþ1; xTþ1; 0g: ð10Þ
Observe that the transition of the new state vari-
able Qt from period to period now depends only
on demand Dt and is independent of inventory
decision yt. Moreover, as mentioned earlier, ðxt;QtÞ
and ðxt;Qr

tÞ form a one-to-one mapping. This
implies that once we know the optimal strategy for
Qt, we can easily find the optimal strategy for Qr

t .
Hence, we can now focus on solving model Equa-
tion (8) – (10). To further simplify our analysis, we
define

Vtðxt;QtÞ ¼ ctxt þ ~Vtðxt;QtÞ;
HtðytÞ ¼ ðct � actþ1Þyt þ actþ1EDt þ LtðytÞ:

for t = 1, 2, . . . ,T. It follows that formulation Equa-
tion (8) – (10) can be re-expressed as

Vtðxt;QtÞ ¼ min
yt>xt

fKdðyt � xtÞ þ Gtðyt;QtÞg; ð11Þ

Gtðyt;QtÞ ¼ HtðytÞ þ aE½Vtþ1ðyt �Dt;Qt �DtÞ�: ð12Þ
with boundary conditions

VTþ1ðxTþ1;QTþ1Þ ¼ KdðyTþ1 � xTþ1Þ þ cTþ1yTþ1; ð13Þ
yTþ1 ¼ maxfQTþ1; xTþ1; 0g: ð14Þ

That said, in our model analysis in sections 3 and
4, we will show that the transformed value func-
tions in Equation (11) – (14) are separable under
certain conditions, which will make the structure of
the optimal policy easier to analyze. In the next sub-
section, we first introduce two properties that are
sufficient conditions for separable functions and
then give some preliminary results about separable
functions.

2.3. Sufficient Conditions for Separable Functions
For completeness, we provide the following defini-
tion of separable functions, as well as two proper-
ties to illustrate sufficient conditions for separable
functions.

DEFINITION 1. Suppose X � R2. A function f : X ! R

is called separable in Ω if there exist functions h : R ! R

and l : R ! R, such that f(x, Q) = h(x) + l(Q).

DEFINITION 2. Define two properties:
PROPERTY I. For any c > 0 and for any x2, if Q1 �Q2

and Q1 � x1, then

fðx1;Q1Þ � fðx1;Q1 � cÞ� fðx2;Q2Þ � fðx2;Q2 � cÞ:
ð15Þ

PROPERTY II. For any c > 0 and for any Q2; if x1 � x2
and Q1 � x1, then

fðx1;Q1Þ � fðx1 � c;Q1Þ� fðx2;Q2Þ � fðx2 � c;Q2Þ:
ð16Þ

With Property I and Property II, we can now
prove the separable property of functions when
x ≥ Q and x ≤ Q, respectively, in the following
result.

LEMMA 1. If f satisfies Property I, then f(x, Q) is
separable when Q ≤ x; if f satisfies Property II, then
f(x, Q) is separable when Q ≥ x.

Next, we present the following results about separa-
ble functions, which will be useful for our analysis
in the next sections.

LEMMA 2. Suppose f1ðy;QÞ : R2 ! R and f2ðy;QÞ :
R2 ! R are continuous separable functions and both are
convex in y for any Q. For a given x 2 R; we define

S�1ðQÞ ¼ argmin
y2R

ff1ðy;QÞg;

S�2ðQÞ ¼ argmin
y2R

ff2ðy;QÞg;

y�1ðx;QÞ ¼ arg min
y>x; y>Q

ff1ðy;QÞg;

y�2ðx;QÞ ¼ arg min
y>x; y6Q

ff2ðy;QÞg:

Then, the following properties hold.

(a) S�1ðQÞ ¼ S�1 and S�2ðQÞ ¼ S�2, that is, they are
constant and independent of Q.

(b) The optimal values of y�1ðx;QÞ and y�2ðx;QÞ are
given as

y�1ðx;QÞ ¼ maxðS�1;Q; xÞ

y�2ðx;QÞ ¼

Q; if x�Q� S�2 ;

S�2; if x� S�2 �Q ;

x; if S�2 � x�Q ;

undefined; otherwise

8>>><
>>>:

(c) Suppose f1ðQ;QÞ ¼ f2ðQ;QÞ and S�1 � S�2. Then,

gðy;QÞ ¼ f1ðy;QÞ; if y�Q ;
f2ðy;QÞ; if y\Q

�

is continuous, and separable when y ≥ Q and separable
when y < Q. Moreover,
if y�gðx;QÞ ¼ argminy>x fgðy;QÞg, then
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y�gðx;QÞ ¼
S�1; if Q� S�1 and x� S�1 ;
Q; if S�1 �Q� S�2 and x�Q ;
S�2; if Q� S�2 and x� S�2 ;
x; otherwise:

8>><
>>:

3. Revisiting the Case of Zero Setup
Cost

In this section, we re-examine the case with zero
fixed setup cost, that is, K = 0. While the optimal-
ity of the dual base-stock policy for this case has
been well established in the literature (Bassok and
Anupindi 1997; Chen and Krass 2001), our pro-
posed formulation allows us to achieve two new
results. First, we prove that the optimal policy is
an unsold-commitment-dependent base-stock pol-
icy. Second, we provide a simpler proof of the
optimality of the dual base-stock policy. That said,
the basic model Equation (11) – (14) can be writ-
ten as follows.

Vtðxt;QtÞ ¼ minyt>xtfGtðyt;QtÞg; ð17Þ

Gtðyt;QtÞ ¼ HtðytÞ þ aE½Vtþ1ðyt �Dt;Qt �DtÞ�; ð18Þ
and the boundary condition is

VTþ1ðxTþ1;QTþ1Þ ¼ cTþ1 maxfQTþ1; xTþ1; 0g: ð19Þ
We first present the following theorem which states

that the optimal ordering policy is an unsold-commit-
ment-dependent base-stock policy. This theorem is
made possible largely because our formulation has
the nice property that unsold commitment (unlike
unbought commitment) evolves exogenously regard-
less of the inventory decision.

THEOREM 3. Suppose K = 0. Then, for t = 1,2,. . .,
T + 1, both Vt and Gt are jointly convex. Moreover, the
optimal ordering decision follows a base-stock policy and
the optimal base-stock level depends on Qt:

However, Theorem 3 does not specify how the opti-
mal base-stock level depends on Qt. This will be
addressed in the next results.

LEMMA 4. When K = 0, for any t = 1,2,. . .,T, Gt, Vt

and VTþ1 satisfy Property I and Property II.

By Lemmas 1 and 4, Gt is separable when y ≥ Q
and also when y < Q. We denote

Gtðyt;QtÞ ¼ G1
t ðyt;QtÞ; if yt �Qt ;

G2
t ðyt;QtÞ; if yt \Qt

�

Then, G1
t ðyt;QtÞ and G2

t ðyt;QtÞ are both separable.
Let StðQtÞ and SMt ðQtÞ be the global minimizers of

G1
t ðyt;QtÞ and G2

t ðyt;QtÞ, respectively. That is,
StðQtÞ ¼ argminytfG1

t ðyt;QtÞg and SMt ðQtÞ ¼ argminyt

fG2
t ðyt;QtÞg: By Lemma 2(a), StðQtÞ ¼ St and

SMt ðQtÞ ¼ SMt are both constant in Qt. Next, we will
characterize St and SMt .

DEFINITION 3. In period t, for t = 1,2,. . .,T, we define
two inventory models, denoted as (P1) and (P2),
which will help us characterize St and SMt :

(P1) vtðxtÞ ¼ minyt>xtfHtðytÞ þ aEvtþ1ðyt � DtÞg,
with boundary condition vTþ1ðxTþ1Þ ¼ cTþ1

maxfxTþ1; 0g.
(P2) utðxtÞ ¼ minyt>xtfHtðytÞ þ aEutþ1ðyt �DtÞg,

with boundary condition uTþ1ðxTþ1Þ ¼ 0:

In (P1), vtðxtÞ refers to the value function of the
classic T-period newsvendor model. For all t, if
we set Qt � xt in our model Equation (17) –
(19), that is, there is no remaining unbought
commitment, it will be proved that the optimal
solution of our problem is identical to the uncon-
strained optimal solution of this standard inventory
model.
In (P2), utðxtÞ represents the value function in

the case that we commit to ordering a fixed
amount of quantity Q so large that the commit-
ment cannot be fulfilled until period T + 1. We let
the last-period value with respect to inventory be
uTþ1ðxTþ1Þ ¼ 0; which has no relations with xTþ1:
If the commitment quantity in the last period is
larger than zero, it is clear that the unbought quan-
tity in each period must be purchased either in
that or later periods. Therefore, it can be consid-
ered a sunk cost and the only relevant costs at this
point in time are the inventory holding and back-
ordering costs.
We now present the characterization of St and SMt

LEMMA 5. For any period t, t = 1,2,. . .,T + 1,

(a) When xt �Qt; the optimal solution of
minytfG1

t ðyt;QtÞg is identical to the optimal solu-
tion of (P1): St ¼ supfS�t jS�t 2 argminytfHtðytÞ
þ aEvtþ1ðyt � DtÞgg;

(b) When xt \Qt; the optimal solution of minyt

fG2
t ðyt;QtÞg is identical to the optimal solution of

(P2): SMt ¼ supfSM�
t jSM�

t 2 argminytfHtðytÞþ
aEutþ1ðyt � DtÞgg:

REMARK 1. Our proof for Lemma 5, part (b) is
simpler and more intuitive than those in the exist-
ing literature because separability in our value
function allows us to find SMt by fixing Qt to
values convenient for analysis. This separable prop-
erty does not hold for value functions in previous
works.
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Before proceeding, we compare the two thresholds
in the following lemma.

LEMMA 6. For any t ¼ 1; 2; . . .;T; St � SMt . Moreover,
for any t ¼ 1; 2; . . .;T þ 1; v0tðxÞ � u0tðxÞ� 0 for any
given x.

We are now ready to present our main result on the
optimal ordering policy for the case of zero setup
cost.

THEOREM 7. In period t, t = 1,2,. . .,T, the optimal
order-up-to level y�t ðx;QÞ can be characterized by the
following form:

y�t ðxt;QtÞ ¼

St; if Qt � St and xt � St ; ðAÞ
Qt; if St �Qt � SMt and xt �Qt ; ðBÞ
SMt ; if Qt � SMt and xt � SMt ; ðCÞ
xt; otherwise: ðDÞ

8>>><
>>>:

PROOF. We consider the optimal policy in any per-
iod t, t = 1, 2, . . . ,T. From Theorem 3, Lemma 4,
and Lemma 6, we have proven that
Gtðyt;QtÞ;Vtðxt;QtÞ are all separable and convex
functions, and that St � SMt : Therefore, our value
function satisfies the assumptions in Lemma 2.
Hence, the results easily follow. h

Theorem 7 provides an alternative presentation and
a simpler proof of the optimality of the dual base-
stock policy first established in Bassok and Anupindi
(1997). It describes exactly how the optimal base-stock
level mentioned in Theorem 3 depends on unsold
commitment, that is, the optimal base-stock level is
maxfminðQt; SMt Þ; Stg. To end this section, we illus-
trate in Figure 1 the dual base-stock policy as a func-
tion of state variables xt and Qt. Observe that the
arrows all move horizontally, because there is no
change in unsold commitment Qt even after a positive
order is placed.

4. The Case of Nonzero Setup Cost

In this section, we consider the case of nonzero setup
cost, that is, K > 0. To the best of our knowledge, ours
is the first paper to analytically examine the optimal
policy for this case. With our proposed formulation,
the problem becomes more tractable. However, while
many inventory problems with nonzero setup cost can
be handled by K-convexity and policies for these prob-
lems are well known, such methodology can only be
applied to one-dimensional problems. Specifically, the
preservation properties of K-convexity no longer hold
in multidimensional problems (see Gallego and Sethi
2005). Since there are two state variables in model
Equation (11) – (13), the standard K-convexity cannot
be preserved. In the first subsection, we explore a new
property of K-convexity, which allows us to prove the
optimality of an unsold-commitment-dependent (s, S)
policy. In the second subsection, we propose an easy-
to-implement heuristic policy and numerically test its
performance vis-a-vis the optimal policy.

4.1. Structural Analysis of Optimal Policy
We first present the following properties of K-convex
functions.

LEMMA 8. Suppose f(y,Q) is K-convex in y for any
given Q.

(a) If W is a random variable, then
E½fðy � W ;Q � WÞ� is K-convex in y, provided
E½jfðy � W ;Q � WÞj�\1 for all (y,Q).

(b) If f(y,Q)?∞ as |y|?∞, then there exist s(Q) and
S(Q) with s(Q) < S(Q) such that
(i) f(S(Q),Q) < f(y,Q), for all y;
(ii) f(S(Q),Q) + K = f(s(Q),Q) < f(y,Q),

for all y < s(Q);
(iii) f(y,Q) is decreasing in y on y 2 (�∞, s(Q));
(iv) f(y,Q) ≤ f(z,Q) + K for all y, z with s(Q) ≤

y ≤ z.

PROOF. For part (a), f(y,Q) is K-convex in y, then
f(y � w,Q � w) is K-convex in y for any fixed Q and
any given w. Thus

R
f(y � w,Q � w)w(w)dw is K-con-

vex in y for any fixed Q, where w(w) is the density
function for W. For part (b), the proof is similar to
the standard approach in Bertsekas (1995). Hence,
we omit the details. h

In Lemma 8, our result in (a) is slightly different
from the previous literature. In previous literature, it
is presented as: for any given Q, if f(y,Q) is K-convex
in y and W is a random variable, then E½fðy � W ;QÞ�
is K-convex. The difference is that in our model, both
state variables are reduced by the same amount of
random demandW. The result in (b) implies preserva-

Figure 1 Optimal Policy for K = 0
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tion properties of K-convexity. The next result is intui-
tive and we omit the proof.

LEMMA 9. For any t = 1,. . .,T, Vt;Gt, and VTþ1 satisfy
Property I.

To characterize the optimal policy, we define two
critical points using the cost functions. We can easily
verify the continuity of the cost functions. It follows
that the critical points are well defined as follows.

DEFINITION 4.

StðQtÞ ¼ min arg inf
yt
fGtðyt;QtÞg; ð20Þ

stðQtÞ ¼ inffytjGtðyt;QtÞ�K þ GtðStðQtÞ;QtÞg: ð21Þ
We are now ready to present our main result in this

section, that is, the optimal ordering policy is an
unsold-commitment-dependent (s, S) policy.

THEOREM 10. For any period t, t = 1, 2, . . . ,T,

(a) Vt;Gt, and VTþ1 are K-convex in yt for any given
Qt.

(b) There exist stðQtÞ and StðQtÞ with stðQtÞ� StðQtÞ,
such that y�t ðxt;QtÞ ¼ StðQtÞ if xt \ st ðQtÞ, and
y�t ðxt;QtÞ ¼ xt otherwise. Moreover, we have
(i) stðQtÞ and StðQtÞ are constant in Qt when

xt �Qt; denoted by st and St;
(ii) stðQtÞ�Qt; when Qt � st;StðQtÞ�Qt; when

Qt � St;
(iii) Let Smax ¼ maxfSM; S1; S2; . . .g; then when

Qt � Smax þ ðT � tÞ�D, stðQtÞ and StðQtÞ are
constant in Qt.

PROOF. The K-convexity of Gt and Vt can be
checked directly. The same can be said about the
first part of part (b). See Bertsekas (1995) for details.
The results that stðQtÞ and StðQtÞ are constant in Qt

when xt �Qt come from Lemma 9 as follows. By
Lemma 9, Gt is separable when Qt � yt and Vt is

separable when Qt � xt. Therefore, there exist hGt ðytÞ,
lGt ðQtÞ, hVt ðxtÞ, and lVt ðQtÞ, such that Gtðyt;QtÞ¼hGt ðytÞ
þlGt ðQtÞ, Vtðxt;QtÞ¼hVt ðxtÞþlVt ðQtÞ: Then, we have

StðQtÞ ¼minarg infytfGtðyt;QtÞg ¼minarg infytfhGt ðytÞ
þ lGt ðQtÞg ¼ minarg infytfhGt ðytÞg, which is a constant,

denoted by St. Similarly, we have stðQtÞ¼ inffytjhGt ðytÞ
þlGt ðQtÞ�Kþ hGt ðStðQtÞÞ þ lGt ðQtÞg ¼ inffytjhGt ðytÞ�K

þhGt ðStÞg; which is also a constant, denoted by st. That
is, stðQtÞ and StðQtÞ are constant when Qt�xt. h

For part (b) (ii), we show stðQtÞ�Qt when Qt � st
by contradiction. Suppose there exists �stðQtÞ [

Qt � st: Then, there exists �stðQtÞ [ z [ Qt � st; such
that Htðy�t ðz;QtÞ;QtÞ þ K þ aVtþ1ðy�t ðz;QtÞ;QtÞ\
Htðz;QtÞ þ aVtþ1ðz;QtÞ;where y�t ðz;QtÞ is the optimal
order-up-to level. As shown by (i), stðQtÞ and StðQtÞ
are constant in Qt when z�Qt: Therefore, �stðQtÞ ¼ st
which contradicts �stðQtÞ [ st:Hence, we have proven
that stðQtÞ�Qt when Qt � st:StðQtÞ�Qt when Qt � St
can be shown in a similar way.
We finally show, given Qt � Smax þ ðT � tÞ�D;stðQtÞ

and StðQtÞ are constant in Qt as follows. When xt �Qt

and Qt � Smax þ ðT � tÞ�D; the optimal strategy is to
stay because stðQtÞ\ StðQtÞ� Smax �Qt. Therefore,
we only consider xt \Qt:
We now prove that when xt \Qt, for any i ≥ t,

y�i \Qi; and xiþ1 \Qiþ1 by induction as follows. We
first prove that when i = t, y�t �Qt: Because
Qt � Smax þ ðT � tÞ�D� Smax [ St [ st; therefore by
(ii), stðQtÞ\ StðQtÞ\Qt. When xt \Qt; the optimal
order-up-to level y�t ðxt;QtÞ ¼ StðQtÞ if xt \ stðQtÞ,
and y�t ðxt;QtÞ ¼ xt otherwise. We have y�t \Qt

because xt \Qt and stðQtÞ\ StðQtÞ\Qt. xtþ1 ¼
y�t � Dt \Qt � Dt ¼ Qtþ1: Therefore the results hold
for period t.
When we have xi \Qi; the optimal order-up-to

level y�i ðxi;QiÞ ¼ SiðQiÞ if xi \ siðQiÞ, and
y�i ðxi;QiÞ ¼ xi otherwise. We have y�i �Qi because
xi \Qi and siðQiÞ\ SiðQiÞ�Qi and xiþ1 ¼ y�i � Di �
Qi � Di ¼ Qiþ1: Therefore, the results hold for any
i ≥ t. For period T, since QT � yT;QTþ1 � xTþ1, we have
GTðyT;QTÞ¼ðcT�cTþ1ÞyTþLTðyTÞþaKþacTþ1minfyT;0g:
When xt\Qt;Qt�SmaxþðT�tÞ �D, we have

Gtðxt;QtÞ ¼ HtðytÞ þ aE½Vtþ1ðyt �Dt;Qt �DtÞ�
¼ HtðytÞ þ aKdðy�tþ1ðytÞ � xtþ1Þ
þ aHtþ1ðy�tþ1ðytÞÞ þ a2E½Vtþ2ðy�tþ1ðytÞ
� Dtþ1;Qtþ1 � Dt � Dtþ1ÞjDt;Dtþ1�

¼ . . .

¼ min
yt>xt

fHtðytÞ þ aKdðy�tþ1ðytÞ � xtþ1Þ
þ aHtþ1ðy�tþ1ðytÞÞ þ � � �
þ aT�tHTðy�Tðy�T�1ð. . .y�tþ1ðytÞ. . .ÞÞÞ

þ aTþ1�tcTþ1ðminfyT; 0g �
XT
k¼t

ðEDkÞÞg;

ð22Þ

where y�n;n = t + 1,. . .,T, is the optimal order up to
level in period n, which is dependent on the previous
inventory levels. Note that the last part of the above
equation is not dependent on any Q levels. Therefore,
StðQtÞ and stðQtÞ are constant numbers. h

Theorem 10 describes the optimal ordering policy,
that is, order up to StðQtÞwhen the on-hand inventory
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is less than stðQtÞ, and order nothing otherwise. The
optimal policy can be shown in a numerical study
depicted in Figure 2. We consider stationary demand
Dt 	Nð10; 1Þ, per-unit cost ct ¼ 10, holding cost
ht ¼ 0:5, backordering cost bt ¼ 2; 8t, and setup cost
K = 30. The planning horizon is 10 periods and we
choose t = 5. Note that unlike the case K = 0, both
reorder and order-up-to levels are dependent on Qt:
For Qt � xt, the problem is reduced to an inventory

replenishment model without commitment. This is
because the total minimum commitment has already
been fulfilled. Therefore, stðQtÞ and StðQtÞ are the
solutions to the T-period standard newsvendor prob-
lem without commitment. For Qt �ðT � tÞ�D þ Smax,
we can interpret it as the commitment is so large that
we will not fulfill the commitment until the last per-
iod, thus we will only consider inventory (holding
and backordering) costs and fixed setup cost. While
we have proven that stðQtÞ and StðQtÞ are constant
when Qt is sufficiently low or sufficiently high, Fig-
ure 2 shows that stðQtÞ and StðQtÞ are neither constant
nor necessarily monotone in Qt.

4.2. Linearized Heuristic Policy
While we have shown in the previous subsection that
the optimal policy is independent of xt, it still
depends on Qt when Qt 2 ðxt; ðT � tÞ�D þ SmaxÞ.
Hence, calculating stðQtÞ and StðQtÞ can still be time-
consuming. To reduce the computational time, we
propose a heuristic policy whereby stðQtÞ and StðQtÞ
depend on Qt linearly as shown in Figure 3. Specifi-
cally, we linearize stðQtÞ and StðQtÞ by connecting the
values of st and St when they are constant in Qt sepa-
rately. We first obtain the optimal St and st when
xt �Qt, then denote ðSt; StÞ as point 1 and ðst; stÞ as
point 3. Next, we compute the optimal S0t and s0t when

Qt �ðT � tÞ�D þ Smax; then denote ðS0t; ðT � tÞ�Dþ
SmaxÞ as point 2 and ðs0t; ðT � tÞ�D þ SmaxÞ as point 4.
Finally, we connect point 1 and point 2 to get the

linear function StðQtÞ ¼ ðQt�StÞðS0t�StÞ
ðT�tÞ�DþSmax�St

þ St. Likewise,

we connect point 3 and point 4 to get stðQtÞ ¼
ðQt�stÞðs0t�stÞ

ðT�tÞ�DþSmax�st
þ st. This linearized heuristic works as

follows: when xt �Qt or Qt �ðT � tÞ�D þ Smax, apply
the optimal (s, S) policy; otherwise, follow the linear-
ized ðstðQtÞ; StðQtÞÞ policy.
In what follows, we numerically test the perfor-

mance of the linearized heuristic vis-a-vis the optimal
(s, S) policy in terms of expected total discounted
cost. We do so for a variety of parameter settings:
T = 12, Dt 	Nð10; 1Þ; ct 2 f1; 2; 4; 6; 8g; ht 2 f0:2; 0:4;
0:6; 0:8; 1g; bt 2 f1; 2; 3; 4g; 8t ¼ 1; . . .;T, and K 2 {5,
10,15,30,45,60} for a total of 600 problem instances.
We let Voptðx;QÞ and Vhðx;QÞ be the total discounted
cost for the optimal (s, S) policy and the linearized
heuristic, respectively, when starting inventory is x
and total commitment is Q. We further define, for
each problem instance, RE(x) as the relative error of
the linearized heuristic with starting inventory x
(worst-case over all realistic values of Q), that is,

REðxÞ ¼ max
Q2½0;�Q�x�

Vhðx;QÞ � Voptðx;QÞ
Voptðx;QÞ � 100%

where �Q equals the mean plus six standard devia-
tions of total demand over all periods, that is,
�Q ¼ T � E½Dt� þ 6

ffiffiffiffi
T

p � rðDtÞ ¼ 10T þ 6
ffiffiffiffi
T

p
. Tables

2, 3, and 4 summarize the results. In Table 2, we
present for each K and each x 2 [0,100] the average
and worst-case RE over 100 instances. We observe
that RE follows an increasing trend with respect to
x. This is because as starting inventory increases, the
total cost decreases, which has a greater impact on
the denominator of RE(x) than its numerator. We
also find that for a given x, RE increases as K

Figure 2 Reorder Level and Order-Up-To Level are not Monotone in
Qt

Figure 3 Linearized (s, S) Policy
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increases, implying the increasing importance of
finding the optimal (s, S) policy as fixed setup cost
becomes larger. Moreover, average RE values
appear to be reasonably low at 11.2% or less for all
K and x values considered, while worst-case RE
does not exceed 16.2% for K ≤ 30. In Table 3, we
vary the contract duration to T = 24 and T = 48 and
run another 600 instances for each T and each x.
Our findings reveal that for a given x, RE decreases
as T increases. Finally, in Table 4, we alter the
demand coefficient of variation (CV) from 0.1 to 0.2,
0.3, and 0.4, and again run another 600 instances
for each CV and each x. Here, we fix the mean of
the normally distributed demand at 10 and vary the
standard deviation. Interestingly, for a given x, the

RE values decrease as demand variability increases.
This seems to suggest that increased demand vari-
ability harms both optimal and heuristic policies
such that the percentage gap between them narrows.
Overall, these results indicate that apart from worst-
case performance when K and x are large and T
is low, the linearized heuristic generally performs
very well.

4.3. Hybrid Heuristic Policy
To further improve our linearized heuristic, we con-
sider using the optimal (s, S) policy for the last b per-
centage of the contract duration and using the
linearized heuristic for the first 1 � b percentage of
the contract duration. For example, when T = 12 and

Table 2 Worst-Case and Average Relative Error (in %) as K Changes

K \x 0 10 20 30 40 50 60 70 80 90 100

Maximum RE
5 1.59 3.03 1.93 3.38 2.34 3.72 2.62 3.91 2.72 3.40 2.59
10 2.85 3.97 4.25 4.11 5.05 5.18 4.62 5.14 4.52 4.80 5.22
15 4.16 4.83 5.25 6.47 5.86 6.62 6.97 6.80 7.15 7.69 8.11
30 7.89 8.94 9.79 10.89 11.28 11.44 12.98 14.13 15.00 15.64 16.20
45 11.38 13.00 14.61 15.89 15.67 17.30 19.27 20.65 21.71 22.46 23.24
60 14.42 15.79 16.62 18.35 20.20 22.07 24.33 25.65 27.35 28.29 28.92
Average RE
5 0.46 0.61 0.55 0.69 0.62 0.76 0.68 0.82 0.73 0.88 0.82
10 1.04 1.41 1.30 1.58 1.46 1.81 1.55 1.87 1.62 1.91 1.88
15 1.44 1.95 1.80 2.22 2.08 2.48 2.23 2.70 2.44 2.77 2.93
30 3.03 3.57 3.79 4.05 4.35 4.66 4.87 5.04 5.23 5.69 6.14
45 4.54 5.07 5.40 5.99 6.35 6.75 7.08 7.61 8.11 8.74 8.87
60 5.70 6.68 7.08 7.74 8.00 8.62 9.50 9.90 10.79 11.35 11.20

Table 3 Worst-Case and Average Relative Error (in %) as T Changes

T \x 0 10 20 30 40 50 60 70 80 90 100

Maximum RE
12 14.42 15.79 16.62 18.35 20.20 22.07 24.33 25.65 27.35 28.29 28.92
24 5.69 6.17 6.58 7.06 7.77 7.89 7.24 7.69 7.87 8.31 8.45
48 0.24 0.41 0.26 0.20 0.30 0.17 0.15 0.13 0.10 0.16 0.10
Average RE
12 2.70 3.21 3.32 3.71 3.81 4.18 4.32 4.66 4.82 5.22 5.31
24 1.05 1.20 1.21 1.29 1.27 1.38 1.35 1.44 1.41 1.44 1.44
48 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Table 4 Worst-Case and Average Relative Error (in %) as Demand CV Changes

CV \x 0 10 20 30 40 50 60 70 80 90 100

Maximum RE
0.1 14.42 15.79 16.62 18.35 20.20 22.07 24.33 25.65 27.35 28.29 28.92
0.2 13.14 14.19 14.98 15.19 16.94 18.70 20.64 22.34 23.84 24.62 24.71
0.3 11.85 12.43 13.19 12.83 14.74 16.54 18.16 19.95 20.77 21.72 21.10
0.4 10.13 10.81 11.45 10.84 12.68 14.37 16.18 17.64 18.54 19.51 18.19
Average RE
0.1 2.70 3.21 3.32 3.71 3.81 4.18 4.32 4.66 4.82 5.22 5.31
0.2 2.07 2.34 2.52 2.70 2.86 3.04 3.23 3.47 3.76 4.04 4.00
0.3 1.74 1.89 2.06 2.19 2.33 2.46 2.64 2.84 3.17 3.39 3.22
0.4 1.46 1.59 1.72 1.84 1.98 2.11 2.27 2.49 2.82 3.01 2.83

Please Cite this article in press as: Yuan Q., et al. Unsold Versus Unbought Commitment: Minimum Total Commitment Contracts with
Nonzero Setup Costs. Production and Operations Management (2015), doi: 10.1111/poms.12364

Yuan, Chua, Liu, and Chen: Unsold Versus Unbought Commitment
Production and Operations Management 0(0), pp. 1–18, © 2015 Production and Operations Management Society 11

info:doi/10.1111/poms.12364


b = 25%, we use the optimal (s, S) policy for the last
bT = 3 periods. This requires negligible increase in
computational time as it is relatively easy to find s(Q)
and S(Q) for say a three-period problem. We call this
policy the hybrid heuristic and conduct numerical tests
to compare with the optimal policy and the linearized
heuristic. Using the same problem parameters as sub-
section 4.2 and considering T = 12 and T = 24, Fig-
ure 4 shows that the hybrid heuristic provides some
benefits when x is low. The improvement is most sub-
stantial for worst-case performance under the reason-
able scenario of short contracts with low starting
inventory.

5. Extensions

In this section, we examine two nontrivial extensions
for which our proposed formulation allows analytical
tractability of the optimal policies. These extensions
demonstrate the general effectiveness of our approach.
Before we present our main extensions, we briefly
mention two straightforward extensions. The first is if
we assume that backorders xTþ1 do not need to be
cleared, which is the case in Bassok and Anupindi
(1997). The last period optimal decision becomes
yTþ1 ¼ maxfxTþ1;QTþ1g; whereas the state transi-
tions in all other periods remain unchanged. It is then
easy to show that the structures of the optimal
policies remain the same. The second is if we assume
that leftover inventory xTþ1 can be salvaged at price
� hTþ1 such that cTþ1 [ � hTþ1, where we recall that
cTþ1 is the unit price to clear the backorders in the last
period. Since cTþ1 þ hTþ1 [ 0, our approach as well

as the optimal policy structures also carry over to this
scenario.

5.1. Extension I: Different Per-Unit Cost Beyond
Commitment
In this extension, we first consider the condition that
the per-unit costs are stationary (i.e., ct ¼ c) and dis-
counted (i.e., decreasing) to c0 \ c when purchasing
beyond the commitment. We further assume a = 1.
This problem can be solved by calculating the
extended costs in the last period. Specifically, we can
let the unit cost be unchanged beyond the commit-
ment but we deduct the cost difference in period T + 1
as follows: VTþ1ðxTþ1;QTþ1Þ¼KdðyTþ1�xTþ1ÞþcyTþ1�
ðc�c0ÞðyTþ1�QTþ1Þ¼KdðyTþ1�xTþ1Þþc0yTþ1þ ðc�c0ÞQTþ1;
where yTþ1¼maxfxTþ1; QTþ1;0g:
For K = 0, since the cost is linear, it can be easily

proven that Properties I and II are still satisfied, that
is, this extension does not violate the structure of the
value function. The optimal policy is of the same form
as Theorem 7. When K > 0, for any t = 1,. . .,T, it can
be similarly proven that Vt; Gt; and VTþ1 are K-convex
in yt (or xt) for any given Qt. Hence, the optimal policy
is also an unsold-commitment-dependent (s, S) policy.
We can also extend the model to allow a discount

factor a ≤ 1 when c0 � c. We have

�Vtðxt;QtÞ ¼ min
yt�xt

�
Kdðyt � xtÞ þ ðc� acÞyt þ acEDt

þ ðc0 � cÞ½ðyt �QtÞþ � ðxt �QtÞþ�

þ LtðytÞ þ aE�VTþ1ðyt �Dt;Qt �DtÞ
�
;
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Figure 4 Comparison of Linearized and Hybrid Heuristic Policies
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for t = 1, 2, . . . ,T, with terminal condition

�VTþ1 ¼ KdðyTþ1 � xTþ1Þ þ cyTþ1 þ ðc0 � cÞ½ðyTþ1

�QTþ1Þþ � ðxTþ1 �QTþ1Þþ�;

where ðyt � QtÞþ � ðxt � QtÞþ in the purchase
quantity in period t in excess of the MTC. Because
ðyt � QtÞþ ¼ ðxtþ1 � Qtþ1Þþ; we can defer the cost
accounting for ðc0 � cÞðxtþ1 � Qtþ1Þþ to the next

period t + 1. We obtain �Vtðxt;QtÞ ¼ minyt � xt

fKdðyt � xtÞ þ ðc � acÞyt þ acEDt þ ðc0 � cÞ½ðxt�QtÞþ
a

�ðxt �QtÞþ� þ LtðytÞ þ aE�Vtþ1ðyt � Dt;Qt �DtÞg;
that is,

�Vtðxt;QtÞ¼min
yt�xt

fKdðyt�xtÞþðc�acÞytþacEDt

þðc0 � cÞ
�
1

a
�1

�
ðxt�QtÞþþLtðytÞ

þaE�Vtþ1ðyt�Dt;Qt�DtÞg;

ð23Þ

with terminal condition

�VTþ1ðxTþ1;QTþ1Þ ¼ KdðyTþ1 � xTþ1Þ þ cyTþ1

þ ðc0 � cÞ½ðyTþ1 �QTþ1Þþ

þ
�
1

a
� 1

�
ðxTþ1 �QTþ1Þþ�;

where yTþ1 ¼ maxfxTþ1;QTþ1; 0g:
From Equation (23), we can show that the term

ðc0 � cÞð1a � 1Þðxt � QtÞþ is convex in Qt when c0 � c
and a ≤ 1. We can verify that Property I and Property
II still hold for zero setup cost case and Property I
holds for nonzero setup cost case. Hence, the struc-
ture of optimal policy in each case does not change
under this setting.

5.2. Extension II: Nonzero Lead Time
In this extension, we take lead time into consideration
to further generalize our basic model. Suppose there
is a positive constant lead time L from order place-
ment to arrival at the buyer. Then, the order placed in
period t will arrive in period t + L. Let T0 ¼ T þ L. It
is obvious that the last ordering opportunity for the
firm to fill demand occurring before the contract ends
is in period T0 � L. In other words, any orders placed
after this period will not arrive before and at T0.
Therefore, it is natural to fulfill all remaining commit-
ment by T.
We use inventory position instead of on-hand

inventory level as the state variable. Let zt be the
inventory position at the beginning of period t before
ordering, and qt be the order quantity in period t. Let
�yt be the inventory position after ordering and xt be
the on-hand inventory at the beginning of period t
after receiving qt�L. Since inventory (holding and
backordering) cost depends on on-hand inventory

and not on inventory position, and on-hand inventory
in period t + L is no longer influenced by any order-
ing decision after period t, we can therefore assign the
expected inventory (holding and backordering) cost
in period t + L to period t, t = 1, 2, . . . ,T. To that end,
we define

�Ltð�ytÞ ¼ aLE½LtþLðxtþLÞ�
¼ aLðhtþL � E½maxfxtþL �DtþL; 0g�
þ btþL � E½maxfDtþL � xtþL; 0g�Þ:

Note that xtþL ¼ �yt � D½t;tþL�1�; where D½t;tþL�1� ¼PtþL�1
n¼t Dn. Hence, we have

�Ltð�ytÞ ¼ aLðhtþL � E½maxf�yt �D½t;tþL�; 0g�
þ btþL � E½maxfD½t;tþL� � �yt; 0g�Þ:

Similar to our basic model, we transform the state
as follows: Qt ¼ zt þ Qr

t ;Qtþ1 ¼ ztþ1 þ Qr
tþ1 ¼ �yt

�Dt þ Qr
t � ð�yt � ztÞ ¼ Qt � Dt: Under these set-

tings, we can write the value function with zt and
Qt as state variables. For t = 1, 2, . . . ,T,

�Vtðzt;QtÞ ¼ min
�yt>zt

fKdð�yt � ztÞ þ �Gtð�yt;QtÞg; ð24Þ

where

�Gtð�yt;QtÞ ¼ �Htð�ytÞ þ aE½�Vtþ1ð�yt �Dt;Qt �DtÞ�; ð25Þ
�Htð�ytÞ ¼ ðct � actþ1Þ�yt þ actþ1EDt þ �Ltð�ytÞ: ð26Þ

with boundary conditions

�VTþ1ðzTþ1;QTþ1Þ ¼ Kdð�yTþ1 � zTþ1Þ þ cTþ1�yTþ1; ð27Þ
�yTþ1 ¼ maxfQTþ1; zTþ1g: ð28Þ

Please note that we have to fulfill the commitment
in period T + 1 in order to receive the order by the
end of the planning horizon. To find the structure of
the optimal policy, we first consider the case of K = 0.
For t = T + 1, we have

�VTþ1ðzTþ1;QTþ1Þ ¼ cTþ1zTþ1; if zTþ1 �QTþ1;
cTþ1QTþ1; ; if zTþ1 \QTþ1

:

�

For t = T,

�VTðzT;QTÞ¼min
�yT>zT

f �HTð�yTÞþaE½�VTþ1ð�yT�DT;QT�DTÞ�g;

¼ min
min�yT>zT ;�yT �QTf �gvTð�yTÞg;
min�yT>zT ;�yT\QTf �guTð�yTÞg
þacTþ1EðQT �DTÞ;

8<
:

where �gvTð�yÞ ¼ �HTð�yÞ þ acTþ1Eð�y � DTÞ, and
�guTð�yÞ ¼ �HTð�yÞ: Hence, ST and SMT under nonzero

Please Cite this article in press as: Yuan Q., et al. Unsold Versus Unbought Commitment: Minimum Total Commitment Contracts with
Nonzero Setup Costs. Production and Operations Management (2015), doi: 10.1111/poms.12364

Yuan, Chua, Liu, and Chen: Unsold Versus Unbought Commitment
Production and Operations Management 0(0), pp. 1–18, © 2015 Production and Operations Management Society 13

info:doi/10.1111/poms.12364


lead time case can be derived from the following
critical fractile:

WðSTÞ ¼ aLbTþL � ðcT � acTþ1Þ � acTþ1Uð�yÞ
aLðhTþL þ bTþLÞ ;

where Ψ(�) is the cumulative distribution function of
D½t;tþL�; and

WðSMT Þ ¼ aLbTþL � ðcT � acTþ1Þ
aLðhTþL þ bTþLÞ :

Since acTþ1Uð�yÞ>0, ST6SMT : We can use almost the
same way to verify that Theorem 3, Lemma 4, and
Lemma 6 still hold under this nonzero lead time case.
Hence, the structure of the optimal policy is of the
same type as the zero lead time case.
For the case when K > 0, it suffices to show that

�Ltð�ytÞ is convex in �yt, which can be easily verified from
its definition. It then follows that the optimal policy is
an unsold-commitment-dependent (s, S) policy. We
omit the straightforward details.

6. Effect of Contract Terms on Buyer’s
Cost

Our analytical results in sections 4 and 5 allow us to
numerically examine how the terms of the MTC con-
tract affect the buyer’s performance. Specifically, we
study the effect of contract duration, lead time and
total commitment on buyer’s optimal cost.

6.1. Duration and Commitment
In this subsection, we consider six different contracts
over the same planning horizon of 12 periods. We
denote the six contracts as follows: 1�12 MTC repre-
sents one 12-period MTC contract, 2�6 MTC repre-
sents two consecutive six-period MTC contracts, and
so on and so forth until 12�1 MTC represents a con-
tract with periodic commitment. The last contract is
an analytically simpler contract which has already
been studied (Anupindi and Akella 1993; Henig et al.
1997; Moinzadeh and Nahmias 2000). We let total
commitment in the 12 periods range from 0 to 240
with increments of 12 units. For example, if total com-
mitment is 120 units, then 2�6 MTC refers to two six-
period MTC contracts with commitments of 60 units
each, while 3�4 MTC refers to three four-period MTC
contracts with commitments of 40 units each. For our
numerical study, we consider Dt 	Nð10; 1Þ;
ct ¼ 10; ht ¼ 0:5; bt ¼ 2; 8t, and K 2 {0,15,30}. Fig-
ures 5(a)–5(c) show the behavior of the buyer’s opti-
mal cost as contract duration and total commitment
change for each setup cost value considered.
Not surprisingly, the optimal cost is nonincreasing

in contract duration and nondecreasing in total com-

mitment, while the gap between the periodic commit-
ment contract 12�1 MTC and any of the other
contracts widens as fixed setup cost increases. This
implies the importance of studying nonzero setup
cost which is one of the elements that differentiates
this study from the literature. Next, observe that the
supplier and the buyer have conflicting duration pref-
erences where periodic commitments are clearly too
inflexible for the buyer. However, shifting from 12�1
MTC to 1�12 MTC, although good for the buyer, will
result in too much instability for the supplier. Fortu-
nately, this is not necessary as Figure 5 shows that
when setup cost is sufficiently large and total commit-
ment is not too large (e.g., less than sum of average
demands), the cost gap can almost be closed by just
shifting from 12�1 MTC to 6�2 MTC. This result pro-
vides a meaningful compromise between the two par-
ties, that is, the supplier only needs to absorb a little
bit more demand uncertainty in order to provide
most of the cost savings that the buyer can get.
We now test the good performance of 6�2 MTC to

see if a periodic commitment approximation can also
achieve the same benefit. To this end, we consider a
new six-period model with periodic commitment
equal to that of each two-period contract in 6�2 MTC.
Moreover, the demand in each new period is doubled
(i.e., the mean is doubled but the standard deviation is
multiplied by

ffiffiffi
2

p
), and unit holding cost and unit

backordering cost are also doubled because these costs
are now incurred over twice the duration. Specifically,
we examine a 6�1 MTC (i.e., periodic commitment)
contract with T = 6, Dt 	Nð20; ffiffiffi

2
p Þ; ct ¼ 10; ht ¼ 1;

bt ¼ 4;8t, and K = 30. Interestingly, we find that the
gap between 6�2 MTC and 6�1 MTC ranges from
39.5% to 62.2% of the gap between 6�2 MTC and 12�1
MTC for total commitment Q = 12,24,. . .,144 (see
Figure 5(d)). The cost difference can be explained by
the order frequency flexibility present in 6�2 MTC
which 6�1 MTC does not have. This implies that sub-
stantial savings are left on the table when one approx-
imates an MTC contract with a periodic commitment
contract. We have hence found further evidence on
the importance of studying MTC contracts, especially
in the presence of nonzero setup cost.

6.2. Lead Time and Commitment
In this subsection, we conduct a numerical study to
examine the trade-off between lead time and total
commitment. We consider the following parameters:
T = 12, Dt 	Nð10; 1Þ; ct ¼ 10; ht ¼ 0:5; bt ¼ 2; 8t, and
K = 30. We further let lead time vary from 0 to 1, 2,
and 3, and let total commitment range from 60 to 200.
The results are shown in Figure 6. This study allows
us to make trade-offs between committing to minimum
total quantities to shorten the lead time vs. swallowing
a larger lead time to reduce (or eliminate) the total
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commitment. For example, when lead time is three
periods and total commitment is 100 units, the buyer
may negotiate to reduce lead time to 0. The figure
shows that committing to Q = 180 will make the
buyer worse off. However, committing to Q = 140
will be of value to both the buyer and the supplier.
This confirms the observation that companies like
Stanley Black & Decker Co. Ltd. may find it profitable
to enter into MTC contracts in order to cut lead times,
say from four weeks to one week (Zou 2012). How-
ever, the total commitment stipulated in the MTC
contract must be carefully chosen. Figure 6 reveals
that lead time reduction can lead to substantial
savings if commitment is not too large. Moreover, a
one-period reduction will have minimal savings if
commitment exceeds some (lead time increasing)
critical level.

7. Effect of Commitment Type on
Supply Chain Profits

While it is clear that the buyer always prefers no com-
mitment over MTC over periodic commitment, and
the suppler always prefers the reverse, it is less clear
which contract type is best for the entire supply chain.
In this section, we consider a simple model to study
this trade-off. First, we calculate expected buyer profit
as unit revenue r multiplied by expected total
demand

PT
t¼1 E½Dt�, minus expected buyer cost as

defined in the earlier sections. To do so, we generate
J = 1000 sample paths D

j
t; 8t ¼ 1; 2; . . . ;T; 8j ¼ 1;

2; . . . ; J. For sample path j, we let q
j
t;8t be the optimal

buyer order quantities and compute the buyer’s cost
accordingly. We then average over all sample paths to
obtain expected buyer cost.
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Figure 5 Optimal Costs with Different Contract Durations
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Next, expected supplier profit can be obtained from
1
J

PJ
j¼1

PTþ1
t¼1 ctq

j
t less expected supplier cost. We model

expected supplier cost as a function of both mean and
variability of buyer orders, in two ways. The first
model is

expected supplier cost

¼ 1

J

XJ

j¼1

XTþ1

t¼1

a � qjt þ f

(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPTþ1
t¼1 ðqjt � �qjÞ2
T þ 1

s )
;

ð29Þ

where �qj ¼
PTþ1

t¼1
q
j
t

Tþ1 , a is the unit production cost and
f is the penalty for order variability.
For our second model, we define T

j
q ¼ PTþ1

t¼1 q
j
t as

total buyer order quantity for sample path j. Then, we
have

expected supplier cost

¼ a �
PJ

j¼1 T
j
q

J
þ f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1ðTj

q � �TqÞ2
J � 1

vuut
;

ð30Þ

(a) (b) (c)

Figure 7 Effect of Commitment Type on Supply Chain Profits with Supplier’s Cost Function (29)

Figure 6 Optimal Cost with Different Q When Lead Time Varies
where �Tq ¼

PJ

j¼1
T
j
q

J , a is still the unit production cost
and f is also the penalty for order variability, albeit
a different type.
The first model considers the variation of orders

across periods while the second considers the varia-
tion of total orders across all 1000 sample paths con-
sidered. Supply chain profit is then defined as the
sum of buyer profit and supplier profit. Observe that
the buyer’s optimal order quantities depend on the
commitment type and the total commitment but not
on the unit revenue r. On the other hand, the expected
supplier profit depend on buyer order quantities as
well as cost parameters a and f. It follows that supply
chain profit is also independent of r.
For our numerical study, we let T = 12,

Dt	Nð10;1Þ;ct ¼ 5;bt ¼ 2;ht ¼ 0:5;8t¼ 1; . . .;T, K = 15
and x1 ¼ 0. We consider commitment levels equal to
80%, 100% and 120% of average demand. That is,
Q12f96;120;144g for MTC contract and MOQ 2
{8,10,12} for periodic commitment contract where
MOQ is the minimum order quantity in every per-
iod. For our two supplier cost models (29) and (30),
we identify in Figures 7 and 8 the values of a and f
for which MTC outperforms MOQ (lined region)
and vice versa (unlined region), and for which MTC
outperforms no commitment (shaded region) and
vice versa (unshaded region). For cost model (29),
Figure 7 shows that MTC outperforms MOQ when f
is low (lined region), that is, order variability is less
important. This region increases as commitment
level increases. For MTC vs. no commitment, the
pattern is more complicated as it depends on com-
mitment level. For low and medium commitment
levels, MTC outperforms no commitment when f
and a are both high (shaded region), shifting more
weight to supplier cost. For high commitment level,
the region is less sensitive to f and MTC outper-
forms no commitment when a is low.
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For cost model (30), Figure 8(c) shows a similar pat-
tern as Figure 7(c), except for a much larger lined
region where MTC outperforms MOQ as well as a
much larger lined shaded region where MTC is the
best of all three contract types. For medium commit-
ment level, MTC is always better than MOQ for all a
and f values considered. Between MTC and no com-
mitment, MTC is preferred when f is high due to
greater penalty for order variability. For low commit-
ment level, MTC is again preferred over MOQ but
commitment is too low that it brings more cost to the
buyer than order variability reduction for the sup-
plier. Hence, no commitment is preferred over MTC.
Overall, for either supplier cost model, the best

commitment type depends on the commitment level,
the supplier’s unit production cost and order variabil-
ity penalty. More interestingly, our study shows that
MTC is a better contract for achieving stability of total
orders, while MOQ is for production smoothing. This
result clearly showcases the value of MTC contracts
and under which scenarios they are most beneficial.

8. Conclusion

In this study, we examine a periodic review inventory
system where there is a MTC on the replenishment
quantities to be fulfilled by the end of a finite plan-
ning horizon. Unlike existing literature, we consider
nonstationary per-unit cost, discount factor, and non-
zero setup cost. Since the old formulations in existing
literature cannot handle our more general setting, we
develop a new formulation based on an intuitive yet
powerful state transformation technique. By using
unsold commitment instead of unbought commit-
ment as the state variable, we discover that the value
function evolves exogenously regardless of inventory
decisions. This makes the analysis easier and we are
able to fully characterize the optimal ordering poli-
cies. We demonstrate our approach by first revisiting

the zero setup cost case, but with nonstationary
per-unit cost and discount factor. We show that the
optimal ordering policy is an unsold-commitment-
dependent base-stock policy and provide a simpler
proof for the optimality of the dual base-stock policy.
We then analyze the case of nonzero setup cost, and
prove for the first time that the optimal solution is an
unsold-commitment-dependent (s, S) policy. We also
design two easy-to-implement heuristic policies,
which numerical tests show to perform very well. We
also discuss two nontrivial extensions (per-unit cost
different beyond commitment, and nonzero lead
time) to demonstrate the general effectiveness of our
approach. Finally, we use our results to examine how
the buyer’s optimal costs are affected by contract
terms such as contract duration, lead time, and total
commitment. We likewise compare total supply chain
profits under periodic commitment, MTC and no
commitment.
Our results are useful because they fully character-

ize the optimal ordering policies for MTC contracts
under very general conditions. This implies the ability
to make more comprehensive assessment and com-
parison among a larger set of MTC contracts. That is,
the supplier and the buyer will have better informa-
tion to design more effective supply contracts. Fur-
thermore, with the results in this study, one will also
be able to study how to allocate the fixed setup cost
between the supplier and the buyer to better allocate
risks and profits in the supply chain. Our results can
also help in the design of a menu of contracts to offer
to buyers with private information (e.g., demand). We
leave these issues for future research.
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Note

1Yuan et al. (2013) consider a model in which permits for
carbon emissions caused by production must be managed
in each period through purchases or sales in the open
market. In their paper, the commitment in each period is
a decision variable but they do not have setup cost for
production. They only have setup cost for changing the
commitment. In our study, the total commitment is fixed
but we have setup cost for production. The two models
and their analyses are fundamentally different, and nei-
ther is a special case of the other.
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