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a b s t r a c t

We consider a stocking-factor-elasticity approach for pricing newsvendor facing multiplicative demand
uncertainty with lost sales. For a class of iso-elastic demand curves, we prove that optimal order quantity
decreases in demand uncertainty for zero salvage value. This contrasts with fixed-price newsvendor
results which depend on the critical ratio. Numerical tests show that optimal order quantity increases
in demand uncertainty for high salvage value, low marginal cost, and low price-elasticity. We also report
results on optimal price, service level, and profit.
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1. Introduction

Consider a pricing newsvendor facing multiplicative demand
uncertainty with lost sales. We study the effect of demand ran-
domness on the optimal price and order quantity, as well as on
the optimal service level (i.e. normalized stocking factor). The im-
pact of demand uncertainty on the firm’s optimal decisions has
been well studied, as summarized in Table 1. Gerchak and Moss-
man [2] first studied the fixed-price newsvendor with lost sales
and found that while the optimal service level is independent of
the demand uncertainty, optimal order quantity increases for high
critical ratios and decreases for low critical ratios. For the pric-
ing newsvendor, results depend on whether unsatisfied demand
is lost or backlogged and demand uncertainty is multiplicative or
additive. For lost sales under certain conditions, Li and Atkins [4]
and Xu et al. [11] found that both optimal price and service level
increase in demand variability for multiplicative demand uncer-
tainty, whereas they both decrease in demand variability for ad-
ditive demand uncertainty. Agrawal and Seshadri [1] considered
backlogged demand satisfied by amore expensive emergency sup-
plier. They found that under multiplicative demand uncertainty,
optimal price is higher with uncertainty than without uncertainty
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while optimal order quantity is lower with uncertainty than with-
out uncertainty. Under additive demand uncertainty, they found
that optimal price and order quantity are independent of demand
uncertainty. For both additive and multiplicative demand uncer-
tainties, they also found that with demand uncertainty, optimal
service level is lower for high critical ratios and higher for low crit-
ical ratios.

In recent years, elasticity-based approaches are gaining popu-
larity in the study of the pricing newsvendor problem because de-
mand elasticities are fundamental to the microeconomic analysis
of pricing problems. Moreover, different elasticity approaches can
be used to address different problems. For instance, Kocabıyıkoğlu
andPopescu [3] show that the price-elasticity of lost-sales rate pro-
vides a general framework for establishing uniqueness of pricing
newsvendor solutions. They also characterize howelasticity affects
price and inventory, and vice versa. Another example is Salinger
and Ampudia [9] who use price-elasticity of expected sales to gen-
eralize the Lerner relationship to price-setting newsvendors. This
result provides a unified framework to understand the different ef-
fects of additive and multiplicative demand uncertainties. In this
paper, we use both price-elasticity of demand and the stocking-
factor-elasticity of expected sales used earlier in Petruzzi et al. [7].

Because of our focus on multiplicative demand with lost sales,
our elasticity approach allows us to discover new relationships as
well as closed forms for optimal decisions and profit of special
cases. As summarized in Table 2, our contributions are as follows.
For general demand curves, we discover a relationship between
the price-elasticity of demand and the stocking-factor-elasticity of
expected sales. We provide a simpler elasticity-based proof for the
result that optimal price is increasing in demand uncertainty, and
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Table 1
Summary of the literature on the effect of demand uncertainty on optimal decisions.

Demand models Price Service levela Order quantity

Fixed-price newsvendor [2] N.A. No change ↑ for high critical ratio, ↓ otherwise

Pricing newsvendor
Lost sales [4,11] Multiplicative ↑ ↑ N.A.

Additive ↓ ↓ N.A.

Backlogged demand [1] Multiplicative ↑ ↓ for high critical ratio, ↑ otherwiseb ↓
b

Additive No change ↓ for high critical ratio, ↑ otherwiseb No changeb

a Service level is defined as the normalized stocking factor.
b Results not explicitly claimed but inferred from the paper’s results.
Table 2
Summary of our contributions on the effect of demand uncertainty on optimal decisions.

Demand model Price Service level Order quantity

Multiplicative demand with lost sales New proof Generalized New results
generalize Li and Atkins’ [4] result for linear demand curve that
the optimal service level is increasing in demand uncertainty. For
a class of iso-elastic demand curves, we obtain the first explicit
result for optimal order quantity of a pricing newsvendor with
lost sales. We find that when salvage value is zero, optimal
order quantity decreases in demand uncertainty. This result
complements Agrawal and Seshadri’s [1] result for backlogged
demand. Moreover, this result holds even when the critical ratio is
high, hence it contrasts with Gerchak and Mossman’s [2] result for
fixed-price newsvendor. Finally, numerical tests show that optimal
order quantity increases in demand uncertainty when salvage
value is high,marginal cost is low, and price-elasticity is low. These
findings persist beyond iso-elastic demand curves, e.g. demand
curve with linear form.

2. Model and results

Facing a random price-dependent demand, a firm’s decision
is to choose order quantity q and selling price p. We focus on
the case where a change in price affects the scale of the demand
distribution. In particular, uncertainty is incorporated into demand
according to a multiplicative fashion as follows.

D(p, ξ) = y(p)ξ

where y′(p) ≤ 0. An economic interpretation for this model is
that ξ represents the uncertainty of the market size and y(p) is
the demand curve. See Petruzzi and Dada [6] and Li and Atkins [4]
for more explanation on the validity of the model. We consider
a general y(p) by only assuming that it satisfies the property
of increasing price-elasticity. Specifically, the price-elasticity of
demand η(p) = −py′(p)/y(p) is increasing in p. (Throughout this
paper, we use increasing and decreasing in their weak sense.) This
property is satisfied by various demand curves in the literature,
including both the power (i.e. y(p) = ap−b) and exponential (i.e.
y(p) = ae−p) forms in [6] and the linear (i.e. y(p) = a − bp) form
in [4].

To study the effect of demand randomness,we consider a family
of random variables

ξβ = βξ + (1 − β)µ

such that the mean and variance of ξ are µ and σ 2, respectively,
and 0 ≤ β ≤ 1. As β increases, the mean of ξβ remains unchanged
while the variance increases. For this reason, it is called the mean-
preserving transformation, which is extensively used in microeco-
nomics and is drawing increasing attention from the operations
management community (e.g. [2,4]). Note that for any β1 ≥ β2, ξβ1
is more variable than ξβ2 (see [2] for details), that is ξβ1 ≥v ξβ2 . We
let f (x) (resp, fβ(x)), F(x) (resp, Fβ(x)) and F̄(x) (resp, F̄β(x)) be the
probability density function, the cumulative distribution function
and the complementary cumulative distribution function, respec-
tively, for ξ (resp, ξβ ). For ease of exposition, we define the failure
rate of ξ as h(x) = f (x)/F̄(x) and assume that ξ has increasing fail-
ure rate (IFR). This assumption is not restrictive as it is satisfied by
a large range of probability distributions, including but not limited
to the uniform,Weibull, normal, and exponential distributions, and
their truncated versions. We further define the generalized failure
rate of ξβ as gβ(x) = xfβ(x)/F̄β(x).

At the beginning of the selling season, the firm stocks q units
of inventory at marginal cost c . At the end of the selling season,
the leftover is salvaged at a unit value s < c. Given selling price p
and market uncertainty ξβ , the expected sales is E min{q, y(p)ξβ}

and the expected leftover is q − E min{q, y(p)ξβ}. Thus, the firm’s
expected profit is

πβ(p, q) = pE min{q, y(p)ξβ} + s[q − E min{q, y(p)ξβ}] − cq
= (p − s)E min{q, y(p)ξβ} − (c − s)q.

For ease of analysis,we transform the decision variables from (p, q)
to (p, z) where z =

q
y(p) is called the stocking factor. It follows that

letting Sβ(z) = E min{z, ξβ},

π̂β(p, z) = (p − s)y(p)Sβ(z) − (c − s)zy(p). (1)

We denote the stock-factor-elasticity of expected sales as ϵβ(z) =

zF̄β(z)/Sβ(z). Also, let the optimal decisions be p∗

β , q∗

β and z∗

β . The
optimal profit will be π∗

β = π̂∗

β . We now present our first result.

Lemma 1. If ξ is IFR, then for any β ,

(a) ϵ′

β(z) < 0,
(b) There exists a unique solution (p∗

β , z∗

β) (equivalently, (p∗

β , q∗

β))
that satisfies
y(p)
y′(p)

+ (p − s)

Sβ(z) = (c − s)z (2)

F̄β(z) =
c − s
p − s

. (3)

Moreover, price-elasticity of demand η(p) and stocking-factor-
elasticity of expected sales ϵβ(z) are related as follows.

p
p − s

·
1

η(p)
+ ϵβ


F̄−1
β


c − s
p − s


= 1. (4)
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Proof. For (a), by definition, Fβ(x) = P[βξ + (1 − β)µ ≤ x] =

P[ξ ≤ [x − (1 − β)µ]/β] = F([x − (1 − β)µ]/β). Thus, gβ(z) =
zfβ (z)
F̄β (z)

= [t + (1− β)µ/β]
f (t)
F̄(t)

, where t = [z − (1− β)µ]/β . Thus,
if ξ is IFR, then ξβ has increasing generalized failure rate for any β .
From Petruzzi et al. [7], the result follows. For (b), (2) and (3) are
obtained by differentiating π̂β with respect to p and z, respectively.
Combining (2) and (3) and by definitions of η(p) and ϵβ(z), we
arrive at (4). For uniqueness, due to part (a) and the fact that η(p)
is increasing in p and F̄β(x) is a decreasing function, the left-hand
side of (4) is strictly decreasing in p. Hence, the optimal solution is
unique. �

We note that Kocabıyıkoğlu and Popescu [3] deals with a more
general model and the price-elasticity of lost-sales rate can be
written as η(p) · gβ(x/y(p)) in our setting. This implies that
our uniqueness result can be also adapted from their approach.
However, our analysis is simpler and our result also sheds light
on the choice of optimal price. In particular, Eq. (4) characterizes
the tradeoff between the price-elasticity of demand and stocking-
factor-elasticity of expected sales. Also, when there is no demand
uncertainty, the second term in the left-hand side of (4) becomes
c−s
p−s . Thus, (4) becomes the classical result that optimal price occurs
at price-elasticity of demand equals to p

p−c .
Next, we will examine the effect of randomness on the optimal

decisions and profit. Because demand uncertainty ξβ also contains
a deterministic portion (1 − β)µ, it is useful to further transform
the decision variables from (p, z) to (p, A) where A =

z−(1−β)µ

β
is

the normalized stocking factor. Substituting z = βA+(1−β)µ into
(1), the firm’s expected profit becomes

π̄β(p, A) = (p − s)y(p)[βS(A) + (1 − β)µ]

− (c − s)y(p)[βA + (1 − β)µ]

= (1 − β)(p − c)y(p)µ + βy(p)
× [(p − s)S(A) − (c − s)A],

where S(A) = S1(A). Observe that profit can be seen as a weighted
sum of profit from deterministic demand and expected profit from
stochastic demand. Then, the normalized stocking factor A can be
interpreted as a service level for the stochastic part as in Li and
Atkins [4]. From here onwards, we shall refer to A as the service
level. As β varies, we are interested to know how the firm should
adjust the optimal service level A∗

β and the optimal price p∗

β , and
also how the optimal profit π∗

β = π̄∗

β changes. It turns out that
while the optimal stocking factor z∗

β is not necessarily monotonic
in β , the optimal normalized stocking factor A∗

β is increasing in β .
The following proposition summarizes the results.

Proposition 1. (a) The optimal service level A∗

β is increasing in β .
(b) The optimal price p∗

β is increasing in β .
(c) The expected profit π∗

β is decreasing in β .

Proof. (a) As A =
z−(1−β)µ

β
, it is easy to see that F̄β(z) = F̄(A) and

Sβ(z) = βS(A)+(1−β)µ. Substituting into (2) and (3) in Lemma1,
we get these first-order conditions.
y(p)
y′(p)

+ (p − s)

[(1 − β)µ + βS(A)] = ĉ[Aβ + (1 − β)µ] (5)

(p − s)F̄(A) = ĉ (6)

where ĉ = c − s. From (6), p = s + ĉ/F̄(A). Substituting into (5),
so A∗

β satisfies
1 +

F̄(A∗

β)s

ĉ


−1

η(s + ĉ/F̄(A∗

β))
+ 1


[(1 − β)µ + βS(A∗

β)]

= F̄(A∗

β)[A∗

ββ + (1 − β)µ].
Taking derivative with respect to β on both sides,
1 +

F̄(A∗

β)s

ĉ


η′(s + ĉ/F̄(A∗

β))

η2(s + ĉ/F̄(A∗

β))

ĉf (A∗

β)

F̄ 2(A∗

β)

dA∗

β

dβ

+
f (A∗

β)s

ĉ
1

η(s + ĉ/F̄(A∗

β))

dA∗

β

dβ


[(1 − β)µ + βS(A∗

β)]

+


−

1 + F̄(A∗

β)s/ĉ

η(s + ĉ/F̄(A∗

β))
+ 1


β F̄(A∗

β)
dA∗

β

dβ
+ S(A∗

β) − µ


= −f (A∗

β)
dA∗

β

dβ


A∗

ββ + (1 − β)µ


+ F̄(A∗

β)

dA∗

β

dβ
β + A∗

β − µ


.

Note that−
1+F̄(A∗

β )s/ĉ

η(s+ĉ/F̄(A∗
β ))

+1 =
F̄(A∗

β )[A∗
ββ+(1−β)µ]

(1−β)µ+βS(A∗
β )

= ϵβ(z∗

β) > 0. After

some algebraic manipulation,
1 +

F̄(A∗

β)s

ĉ


η′(s + ĉ/F̄(A∗

β))

η2(s + ĉ/F̄(A∗

β))

ĉf (A∗

β)

F̄ 2(A∗

β)

+
f (A∗

β)s

ĉ
1

η(s + ĉ/F̄(A∗

β))


[(1 − β)µ + βS(A∗

β)]

+ ϵβ(z∗

β)β F̄(A∗

β) + f (A∗

β)

× [A∗

ββ + (1 − β)µ] − β F̄(A∗

β)

dA∗

β

dβ

= F̄(A∗

β)[A∗

β − µ] − ϵβ(z∗

β)[S(A∗

β) − µ]. (7)

From Lemma 1(a), ϵ′

β(z) = ϵβ(z)[1− ϵβ(z) − gβ(z)]/z < 0, hence
ϵβ(z)+gβ(z) > 1. Thus, ϵβ(z∗

β)β F̄(A∗

β)+ f (A∗

β)[A∗

ββ +(1−β)µ]−

β F̄(A∗

β) = β F̄(A∗

β)[ϵβ(z∗

β) + g1(A∗

β) − 1] + (1 − β)µf (A∗

β) =

β F̄(A∗

β)[ϵβ(z∗

β) + gβ(z∗

β) − 1] > 0, where the second equation

is because gβ(z∗

β) = g1(A∗

β) +
(1−β)µf (A∗

β )

β F̄(A∗
β )

and the inequality is

because of ϵβ(z∗

β) + gβ(z∗

β) > 1. Hence, the coefficient of
dA∗

β

dβ
on the left-hand side of (7) (i.e. the entire expression inside the
{. . .}) is positive. Moreover, the right-hand side of (7) is equal to

F̄(A∗

β)[A∗

β −µ]−
F̄(A∗

β )[A∗
ββ+(1−β)µ]

(1−β)µ+βS(A∗
β )

[S(A∗

β)−µ] =
F̄(A∗

β )

(1−β)µ+βS(A∗
β )

[A∗

β −

S(A∗

β)]µ ≥ 0. Thus,
dA∗

β

dβ ≥ 0.
(b) The result for the optimal price is because p∗

β = s + ĉ/F̄(A∗

β).
(c) Let h(x) = (p− s)E min{q, y(p)x}− (c − s)q, it is easily verified
that h(x) is concave in x. Since for any β1 ≥ β2, ξβ1 ≥v ξβ2 , from
Corollary 8.5.2 in Ross [8, p. 271], we have Eh(ξβ1) ≤ Eh(ξβ2).
Then, π̄β1(p

∗

β1
, A∗

β1
) ≤ π̄β2(p

∗

β1
, A∗

β1
). Hence, π̄β1(p

∗

β1
, A∗

β1
) ≤

π̄β2(p
∗

β2
, A∗

β2
); namely, the expected profit is decreasing in demand

variability. �

The proposition implies that as demand variability increases,
the firm’s optimal decision is to increase both the service level and
the price. Moreover, the firm will receive less profit. For part (a),
Li and Atkins [4] proved it for the special case of linear demand
curve (i.e. y(p) = a − bp), while we generalize it to the class of
demand curves with increasing price-elasticity. In addition, our
proof method is different from theirs as we do not employ any
second-order derivatives. Ourmethodworks because the stocking-
factor-elasticity of expected sales is a decreasing function as shown
in Lemma 1(a). This result further allows us to prove part (b)
through a simple newsvendor formula, namely, F̄(A∗

β) =
c−s
p∗
β−s .

Wemust note however that both Salinger and Ampudia [9] and Xu
et al. [11] obtain the same result on price. Our result complements
the literature by considering the service level which provides
an operational reason for the change of price under uncertainty.
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Part (c) is also an existing result (see [11]), but we include it for
completeness and for use in Proposition 2 later.

For practitioners as well as researchers, a more interesting
problem is how the order quantity changes with demand variabil-
ity. To answer this question, we first focus on a class of iso-elastic
demand curves.

y(p) = p−b, b > 1.

Note that the iso-elastic demand curve is widely used in the opera-
tions management literature (e.g. Petruzzi and Dada [6], Monahan
et al. [5], Wang et al. [10]). For this class of demand curves, one
can find an explicit solution for the pricing newsvendor problem.
More importantly, it allows us to characterize the effect of demand
uncertainty on optimal order quantity.

Proposition 2. Consider any iso-elastic demand curve y(p) = p−b,
b > 1.

(a) For any ξβ , the optimal solution is p∗

β = s +
c−s

F̄β (z∗β )
and q∗

β =

z∗

β [s +
c−s

F̄β (z∗β )
]
−b, and the associated expected profit is π∗

β =

(c − s) · q∗

β [
1

ϵβ (z∗β )
− 1], where ϵβ(z∗

β) = 1 −
1
b −

F̄β (z∗β )s

b(c−s) .

(b) When s = 0 and for any ξβ , the optimal solution is p∗

β = c/F̄β(z∗

β)

and q∗

β = z∗

β [F̄β(z∗

β)/c]b, and the associated expected profit is
π∗

β =
c

b−1q
∗

β , where z∗

β = ϵ−1
β (1 −

1
b ).

(c) When s = 0, the optimal order inventory q∗

β is decreasing in β .

Proof. (a) The optimal price follows from (3) in Lemma 1 while
optimal order quantity follows from the definition of stocking
factor, the optimal price, and the iso-elastic nature of the demand
curve. It is easy to see that y(p)

y′(p) =
−p
b . Substituting into (2), we get

[
−p
b + (p− s)]Sβ(z) = (c− s)z. With some algebraic manipulation,

weobtain ϵβ(z) =
F̄β (z)
c−s [(p−s)(1− 1

b )−
s
b ]. Substituting the optimal

price will yield the elasticity at the optimal stocking level. Finally,
optimal profit follows by substituting the first-order conditions
and z =

q
p−b into (1) and simplifying the expressions.

(b) The result follows by substituting s = 0 into (a).
(c) As π∗

β =
c

b−1q
∗

β , the result is straightforward from Proposi-
tion 1(c). �

To our best knowledge, Proposition 2 is the first explicit
result for the optimal order quantity of the pricing newsvendor
problemwith lost sales. From Proposition 1(c), we know that π∗

β is
decreasing in β . Proposition 2(a) implies that this decrease will be
due to q∗

β decreasing inβ if 1
ϵβ (z∗β )

−1 is increasingβ . This condition

is not easy to satisfy because in general, neither z∗

β nor ϵβ(·) has
monotonicity properties. However, when s = 0, Proposition 2(b)
shows that this condition holds, hence q∗

β is decreasing in β . This
result complements the literature on pricing newsvendor with
backlogged demand, where Agrawal and Seshadri [1] show that
the optimal order quantity with uncertainty is lower than without
uncertainty.

It is interesting to compare our pricing newsvendor result with
the fixed-price newsvendor.When the price is exogenous, Gerchak
and Mossman [2] show that the order quantity is increasing in de-
mand variability if and only if the critical ratio γ = cu/(co + cu) >
F(µ), where cu and co are the unit underage and overage costs, re-
spectively. Does this rule hold for the price-setting newsvendor?
Specifically, does γ > F(µ) indicate that order quantity is increas-
ing in demand variability?

To answer this problem, consider the case when the demand is
deterministic (i.e. β = 0) and there is no salvage value (i.e. s = 0).
Then, the order quantity q = y(p)µ and the profitπ = (p−c)p−bµ.
It is easy to see that the optimal solution is p∗

0 =
b

b−1 c. Hence,
the corresponding critical ratio γ0 = (p∗

0 − c)/p∗

0 = 1/b. From
Proposition 1(b), we know p∗

β is increasing in β . Hence, if γ0 >

F(µ), then (p∗

β − c)/p∗

β ≥ (p∗

0 − c)/p∗

0 > F(µ) = Fβ(µ) for any
0 ≤ β ≤ 1. We summarize the result as follows.

Proposition 3. Consider any iso-elastic demand curve y(p) = p−b,
b > 1, and s = 0. If bF(µ) < 1, then the critical ratio γβ > Fβ(µ)
for any β ∈ [0, 1].

Proposition 3 shows that if bF(µ) < 1, then the critical ratio
γβ > Fβ(µ). Note that Gerchak and Mossman [2] shows that for
fixed-price newsvendor the order quantity increases in demand
variability if γβ > Fβ(µ) and decreases otherwise, but Proposi-
tion 2(c) indicates that the order quantity here is still decreasing.
Hence, the simple comparison between the critical ratio and Fβ(µ)
is not enough to explain the effect of demand randomness on order
quantity for the pricing newsvendor. Next, we will further explore
the underlying driving forces behind the change in optimal order
quantity.

3. Numerical analysis

While Proposition 2 tells us that order quantity is decreasing in
demand variability for iso-elastic demand curves and zero salvage
value, what about when salvage value is positive? Moreover, how
do the marginal cost and demand curve influence the change in
order quantity? To that end, we let the demand curve y(p) = p−b

and ξ ∼ N(100, 302). We then numerically show the change in
order quantity for different values of salvage value, price-elasticity
and marginal cost. The results are shown in Fig. 1.

In Fig. 1(a), when the salvage value increases, the slope for the
change in order quantity (i.e., dq∗

β/dβ) increases. In particular, if
the salvage value is zero, as Proposition 2(c) demonstrates, the
order quantity decreases in demand variability. However, as the
salvage value becomes greater (e.g., s = 0.4), the order quan-
tity changes direction and becomes increasing in demand variabil-
ity. To understand this, when the price is fixed at p, Gerchak and
Mossman [2] show that the change in order quantity dQ ∗

β /dβ =

F−1(
p−c
p−s ) − µ is increasing in s. Fig. 1(a) suggests that the pricing

newsvendor inherits this behavior from the fixed-price newsven-
dor. For Fig. 1(b), the slope for the change in order quantity (i.e.,
dq∗

β/dβ) is decreasing in the price-elasticity b. The reason is that
as b increases, pricing becomes a more effective tool so that the
newsvendor can rely more on pricing rather than on quantity.
Hence, themarginal effect on order quantity decreases, i.e. dq∗

β/dβ
is decreasing in b. Fig. 1(c) shows that the slope for the change in
order quantity is decreasing in marginal cost, and the underlying
reason is similar to the effect of salvage value.

Finally, to test the robustness of these results, we consider the
case when the demand curve is linear. Without loss of generality,
let y(p) = 1 − bp. Analogously, we show the change in order
quantity for different values of salvage value, price-elasticity and
marginal cost in Fig. 2. On the effect of salvage value and marginal
cost, it is clear that Figs. 2 and 1 are qualitatively the same. The
seeming difference for the effect of price-elasticity is due to the
fact that the influence of demand variability on order quantity itself
(not change in order quantity) for the two demand curves are in
opposite directions.
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Fig. 1. Order quantity w.r.t β for y(p) = p−b .
Fig. 2. Order quantity w.r.t β for y(p) = 1 − bp.
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