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a b s t r a c t 

In multi-product multi-plant manufacturing systems, process flexibility is the ability to produce different 

types of products in the same manufacturing plant or production line. While several design methods and 

flexibility indices have been proposed in the literature on how to design process flexibility, most of the 

insights generated are focused on identical production systems whereby all plants have the same capacity 

and all products have identically distributed demands. In this paper, we examine the process flexibility 

design problem for non-identical systems. We first study the effect of non-identical demand distributions 

on the performance of the well-known long chain design, and discover three interesting insights: (1) 

products with low demand mean will create a bottleneck effect, (2) products with low demand variance 

will result in inefficient utilization of flexibility links, and (3) long chain efficiency decreases in demand 

variance of any product, hence the need to provide this product with access to more capacity. Using these 

insights, we develop the variance-based hub-and-chain method (VHC), a simple and graphically intuitive 

method which decomposes the long chain into smaller chains, one of which will serve as a hub to which 

the other chains will be connected. Numerical tests show that VHC outperforms the long chain by 15% 

on average and outperforms the constraint sampling method by 38% on average. Lastly, we implement 

VHC on a case study in the edible oil industry in China and find substantial benefits. We then summarize 

with some managerial insights. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

“If the last few years have taught us anything, it is that customer

wants and needs can change quickly – much more quickly than

we have been equipped to respond to efficiently in the past. At

Michigan Assembly, we will achieve a level of flexibility we don’t

have in any other plant around the world, which will allow us to

meet shifting consumer preferences in real time. ” - Jim Tetreault,

Ford Vice President of North America Manufacturing ( Ford Me-

dia, August 2010 ). 

Ford VP Jim Tetreault declared those statements less than two

ears removed from the disastrous year of 2008, which saw Ford

bsorb a $14.68B loss while watching Asian rivals Toyota and

onda rake in billions in profits. By 2010, Ford has started staging

ts much talked about turnaround on the way to accumulating over

35B in profits in a span of four years. While pundits rave about

he new car models (e.g. Fusion, Fiesta) or new car technologies

e.g. Sync) launched during that period, it is no secret that the key
∗ Corresponding author. Tel.: +65 67906140. 
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eason for this turnaround is Ford becoming a more nimble and

exible automaker ( LeBeau, 2010 ). Indeed, the company’s Michi-

an Assembly Plant has undergone an industry-first $550M reno-

ation, equipping the plant not only to make a variety of models,

ut also different powertrains, such as conventional and electric

 Woodyard, 2011 ). Not to mention the earlier $200M investment

n 2009 to retool Ford’s Kentucky Truck Plant with a flexible body

hop capable of producing a wide range of trucks and SUVs ( Ford

edia, April 2009 ). As Dave Cole, chairman emeritus for the Center

or Automotive Research, puts it, “Lean isn’t good enough anymore.

he new reality requires being both lean and flexible.” ( Woodyard,

011 ). 

As flexibility gains importance as a strategic priority, it has

lso attracted strong attention from the academic community. Be-

ause flexibility comes in various forms, the earlier works (e.g.

uzacott, 1982; Gupta & Goyal, 1989; Sethi & Sethi, 1990 ) were

ostly reviews and taxonomies, focused on understanding the na-

ure of flexibility, developing measures and evaluation criteria, as

ell as categorizing the various types of flexibility. Subsequently,

esearch focus has shifted to the strategic issue of flexibility de-

ign (i.e. what kind of flexibility to employ and how much), and

as centered on process flexibility , defined as “the ability to produce
ility Design in Non-Identical Systems Using Variance Information, 

16/j.ejor.2016.03.019 

http://dx.doi.org/10.1016/j.ejor.2016.03.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:gbachua@ntu.edu.sg
http://dx.doi.org/10.1016/j.ejor.2016.03.019
http://dx.doi.org/10.1016/j.ejor.2016.03.019


2 G.A. Chua et al. / European Journal of Operational Research 0 0 0 (2016) 1–14 

ARTICLE IN PRESS 

JID: EOR [m5G; April 6, 2016;10:48 ] 

2

4

3

1 1

2

3

4

(0,20)

(0,20)

(0,20)

(0,20)

10

10

10

10

dc

ba

5 5 01)11,9(

2

4

3

1 1

2

3

4

(0,20)

(0,20)

(0,20)

(0,20)

5 5(9,11)

10

10

10

10

10

2

4

3

1 1

2

3

4

(5,15)

(5,15)

(5,15)

(5,15)

10

10

10

10

5 5 01)51,5(

2

3

1 1

2

3

(50,150)

(50,150)

(9,11)

100

100

10

6 6 01)51,5(

2

3

1 1

2

3

(50,150)

(50,150)

(9,11)

100

100

10

Fig. 1. Performance of long chains: Examples. 
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different types of products in the same manufacturing plant or on

the same production line”. Specifically, the process flexibility design

problem is as follows: given a set of products with random de-

mands, a set of plants with fixed capacities and a limited num-

ber of product-plant links indicating the capability of said plant to

produce said product, how should one deploy these links such that

system performance (i.e. expected maximum flow) is maximized?

Similar to the auto-making industry, such is also the problem fac-

ing one of the largest producers of edible oil products in China

whose plants have various filling and packaging lines that are used

to manufacture products of various shapes and sizes. This is pre-

cisely one of the reasons that motivated us to study the process

flexibility design problem. We shall report our analysis and find-

ings for this company in Section 5 . 

One of the most important ideas on this topic is the concept

of the chaining strategy . Jordan and Graves (1995) were the first

to observe that a partially flexible system using only a few flexi-

bility links, if configured the right way, can already achieve most

of the benefits of full flexibility. Their proposed chaining strat-

egy is essentially a set of guidelines on how to achieve this high-

performing partially flexible configuration. Suppose we have a bal-

anced production system where (1) the number of products equals

the number of plants, and (2) the mean demand of each prod-

uct is equal to the capacity of its primary plant. 1 Assume further

that this system is identical such that (1) all product demands are

independent and identically distributed, and (2) all plants have

the same capacity. In this setting, the chaining strategy will re-

sult in a flexibility design where each product will be connected

to two plants and each plant will be linked to two products such

that there always exists a path connecting any pair of product and

plant. This design is known as the long chain and Fig. 1 (b) shows

one example. 

A number of papers in the literature examine the balanced

and identical system. Aksin and Karaesmen (2007) use a network

model to show that the system performance is concave in the
1 Note that our definition for “balanced” system deviates from existing terminol- 

ogy with the addition of condition (2). We do so to better capture what is a truly 

balanced system and to afford us analytical tractability in examining non-identical 

systems. 
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egree of flexibility. Chou, Chua, Teo, and Zheng (2010b) develop

 random walk approach to characterize asymptotic performance

f the chaining strategy as system size grows very large, while

hou, Chua, Teo, and Zheng (2011) use graph expanders to exam-

ne the worst-case maximum flow. Simchi-Levi and Wei (2012) use

he supermodularity property to prove the optimality of the long

hain among systems that use the same amount of flexibility as

ell as to characterize the performance of the long chain for arbi-

rary system sizes. Chou, Chua, and Teo (2010a) examine the ef-

ect of response dimension of flexibility, while Chou, Chua, and

heng (2014) study the effect of production postponement on pro-

ess flexibility. Wang and Zhang (2015) provide a distribution-free

nalysis of the long chain, while Chen, Zhang, and Zhou (2015) ex-

end Chou et al. ’s (2011) work to probabilistic graph expanders. 

For the general setting of unbalanced and non-identical sys-

ems, there are two categories of results. The first provides guide-

ines such as the Chaining Guidelines by Jordan and Graves (1995) ,

he constraint sampling method by Chou et al. (2010b) , and the ex-

ansion heuristic by Chou et al. (2011) . The second category pro-

oses the use of indices to rank various flexibility designs, such as

he JG-Index by Jordan and Graves (1995) , the Structural Flexibility

SF) indices by Iravani, Oyen, and Sims (2005) , the WS-APL met-

ic by Iravani, Kolfal, and Oyen (2007) , and the Expansion Index

y Chou, Teo, and Zheng (2008) . However, all these methods are

ither sampling-based approaches (hence time-consuming and re-

ult in highly variable outputs) or heuristics that do not explicitly

ake into account demand variance information. 

For unbalanced but identical systems, Deng and Shen (2013) de-

elop the Enhanced Chaining Guideline but this method does not

tilize the variance information nor does it work for balanced but

on-identical systems. To our best knowledge, our paper is the first

ttempt to study balanced but non-identical systems in greater de-

ail. This setting allows us to analytically examine the effect of

on-identical demand means and variances on the performance of

he long chain design. The insights we derive from the analysis will

hen help us develop a new flexibility design method that explic-

tly takes advantage of the demand variance information. 

To illustrate, we consider a few examples in Fig. 1 . In all these

xamples, each system is represented by a bipartite graph with
ility Design in Non-Identical Systems Using Variance Information, 
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 set of products on the left and a set of plants on the right.

ach product has a two-point demand distribution with equal

robability. For example, a label of (50, 150) denotes the de-

and has a 50–50 chance of being 50 units or 150 units. On the

ther hand, each plant has fixed capacity given by the label to

ts right. System performance is determined by solving a maxi-

um flow problem for each demand realization and taking ex-

ectation over all possible maximum flow values. That said, we

rst consider the two 3 × 3 systems in Fig. 1 (a). The long chain

n top generates an expected output of 174.9 units, whereas the

econd design not only uses one less link but also improves the

utput to 184.5 units. The reason is because the third product–

lant pair becomes a bottleneck when included in the long

hain. 

For our second example, we refer to Fig. 1 (b), and define effi-

iency of a flexibility design as the ratio of its improvement over

he dedicated design relative to full flexibility. We find that if de-

and distribution for any product changes from (5, 15) to (9, 11),

hen the efficiency of the long chain improves. This suggests that

ong chain efficiency decreases in demand variance of any product.

ur third example compares Figs. 1 (c) and (d), where two flexibil-

ty designs are employed on the same balanced but non-identical

ystem. The outputs of the two designs are 39.75 and 39.5 units,

espectively. This is only a small difference, and yet Fig. 1 (d) can

ave one link. Meanwhile, if demand for product 5 also becomes

0, 20), the difference between the two designs increases, hence

ess incentive to save that one link. 

In this paper, we manage to prove the three insights generated

y the three above examples. Subsequently, we use these insights

o devise a variance-based method for designing process flexibil-

ty in non-identical systems. The way our method works is to first

solate products with low demand variances into a group that will

nly employ a dedicated design. Then, we group the remaining

roducts into subgroups according to proximity of demand means.

he subgroup should also not exceed a maximum amount of group

emand variability, measured by a group coefficient of variation

GCV) that we introduce in this paper. Each of these subgroups

ill employ the long chain design. Then, a satellite product–plant

air will be selected from each subgroup. The satellite pair of the

ubgroup with the largest demand means will serve as the hub to

hich all satellite pairs of the other subgroups will be connected.

s such, we refer to our method as the variance-based hub-and-

hain method or VHC. To our best knowledge, VHC is the first

ethod that explicitly incorporates demand variance information

or non-identical systems. It is also graphically intuitive and sim-

le to explain to managers, because it is reminiscent of the hub-

nd-spoke network used in airlines but each node is replaced by a

mall chain. Moreover, our numerical tests show that it is compu-

ationally efficient and produces flexibility designs that outperform

he long chain by 15% and the designs from constraint sampling

ethod by 38%. 

We make the following contributions to the literature. First, we

nalytically prove the effect of changes in demand means and vari-

nces on system performance and long chain efficiency. Second,

e discover three interesting insights as follows: (1) products with

ow demand mean can create a bottleneck effect, (2) products with

ow demand variance will result in inefficient utilization of flexibil-

ty links, and (3) long chain efficiency decreases in demand vari-

nce of any product, hence it will be a good idea to provide this

roduct with access to more capacity. Third, we use these insights

o develop a simple and graphically intuitive variance-based VHC

ethod for designing simple and flexible non-identical systems.

ourth, we numerically test our method for different demand dis-

ributions, and benchmark against existing methods. We do so for

oth simulated scenarios and a real case study from the edible oil

ndustry. 
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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The rest of the paper is organized as follows. In Section 2 ,

e define the basic model and notations. Section 3 presents our

ain results on the effect of demand mean and variance on sys-

em performance and efficiency. We then present our hub-and-

hain method in Section 4 , including numerical tests to benchmark

gainst existing methods. In Section 5 , we report the results of

ur case study and discuss some managerial implications. Finally,

ection 6 concludes. 

. Model and notation 

Consider a manufacturing system with n plants, facing random

emand for m products. We model this system through a bipar-

ite graph representation G = (A, B, G ) , where A denotes the set

f products, B denotes the set of plants, and G denotes the set of

dges ( i , j ) signifying the capability of plant j to produce product i .

hat is, A = { 1 , 2 , . . . , m } , B = { 1 , 2 , . . . , n } , and G ⊆ A × B . Next, we

se the vector D to denote the random demand, and the vector d

or a particular realization of D . We further let D i and d i be the

espective random demand and particular demand realization for

roduct i . On the other hand, we let the capacity at plant j be fixed

t c j and let the vector c = [ c 1 , . . . , c n ] 
T . Note that for a given sys-

em, every flexibility design can be uniquely represented by the

dge set G . Furthermore, given a demand realization d , the maxi-

um sales which can be achieved by a flexibility design G is de-

ned as 

(d , G ) = max 
∑ 

i ∈ A 

∑ 

j∈ B 
x i j , 

.t. 
∑ 

j∈ B 
x i j ≤ d i ∀ i ∈ A 

∑ 

i ∈ A 
x i j ≤ c j ∀ j ∈ B 

x i j ≥ 0 ∀ (i, j) ∈ G 

x i j = 0 ∀ (i, j) / ∈ G 

here x ij refers to the amount of product i produced by plant j . 

Under random demand D , the maximum sales Z(D , G ) is it-

elf also a random variable. Hence, we define the performance , also

eferred to as expected maximum sales, of G to be E[ Z(D , G )] .

or ease of exposition and whenever the context is clear, we also

se the notation [ G ] to denote this quantity. In general, the prob-

em is to generate a flexibility design G that maximizes [ G ] with-

ut exceeding a flexibility budget b . That is, we want to solve

ax G : | G |≤b [ G ] . However, this problem involves a stochastic pro-

ram and is notoriously difficult and time consuming to solve. As

uch, most works in the literature focus on developing heuristics

o solve special classes of this problem. 

To classify process flexibility design problems, we introduce the

ollowing definitions. We say that the system is balanced if (1)

 = n, and (2) the products and plants can be arranged such that

[ D i ] = c i for all i ∈ A . Moreover, we call the system identical if (1)

he product demands are IID, i.e. D i = D in distribution for all i ∈ A

nd (2) the plant capacities are all equal, i.e. c j = c for all j ∈ B . Be-

ause of our interest in problems with heterogeneous product de-

and variances, we focus our study on balanced but non-identical

ystems. 

That said, we let n denote the system size (since m = n ), and

et μi = E[ D i ] = c i be the mean demand and σ 2 
i 

be the demand

ariance for product i for all i = 1 , 2 , . . . , n . We also define a few

lasses of flexibility designs for balanced systems of size n ≥ 2. The

edicated design is defined as D n = { (i, i ) | i = 1 , 2 , . . . , n } ; the open

hain design is defined as L n = D n ∪ { (i, i + 1) | i = 1 , 2 , . . . , n − 1 } ;
he long chain design is defined as C n = L n ∪ { (n, 1) } ; and the full

exibility design is defined as F n = { (i, j) | i, j = 1 , 2 , . . . , n } . Our
ility Design in Non-Identical Systems Using Variance Information, 
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goal in this paper, as in the literature, is to analyze the perfor-

mance of these flexibility designs as well as to develop new meth-

ods to improve on these designs, particularly for non-identical

systems. 

To this end, we further define two performance measures that

will be useful in developing our new flexibility design method. We

define system potential as the difference between the performance

of full flexibility and that of the dedicated design. That is, we let

system potential be p(D ) = [ F n ] − [ D n ] . Next, we define efficiency

of a flexibility design as the ratio of the difference between the

performance of the given flexibility design and that of the dedi-

cated design over system potential. That is, we let the efficiency of

G be f (D , G ) = 

[ G ] −[ D n ] 
[ F n ] −[ D n ] 

. For example, f (D , C n ) is equivalent to

the chaining efficiency used in Chou et al. (2010b) . 

3. Analysis and main results 

In this section, we examine the effect of changes in demand

means and variances on system potential and flexibility design ef-

ficiency. The results will then be used to obtain insights on how to

develop methods that can generate good flexibility designs. 

For analytical purposes, we consider two types of demand dis-

tributions; namely, the normal distribution and the symmetric

three-point distribution. For normal distribution, we assume that

for i = 1 , 2 , . . . , n, D i ∼ N ( μi , σ i ) with 3 σ ≤ μ so that negative de-

mand values are negligible. This is a reasonable assumption and is

common in the literature. For symmetric three-point distribution,

we assume that for i = 1 , 2 , . . . , n, 

D i = 

{ 

μi − ηi , with probability t i 
μi , with probability 1 − 2 t i 
μi + ηi , with probability t i 

where 0 ≤ ηi ≤ μi and 0 ≤ t i < 

1 
2 . This is likewise a rea-

sonable assumption because it characterizes products that have

peak, shoulder, and off-peak demands. Moreover, in their study

of distribution-free models, Deng and Shen (2014) show that if

only the marginal mean and covariance matrix are known while

the marginal distribution is unknown, the worst-case distribution

when demands are independent is a three-point distribution for

every product demand. That said, higher values of ηi or t i imply

higher demand variance. For both distribution types, we also as-

sume that the product demands are independent. 

With a slight abuse of notation, we let system potential p ( D )

be changed to p ( μ, σ) for normal distribution and p ( μ, η, t ) for

symmetric three-point distribution. Similarly, we change flexibility

design efficiency to f ( μ, σ, G ) and f ( μ, η, t , G ) whenever appro-

priate. We are now ready to present our results. 

Theorem 1. Consider a balanced but non-identical system of size n

such that E[ D i ] = c i for all i ∈ A. For normal distribution, the system

potential p ( μ, σ) is increasing and concave in σ k , but independent of

μk . For symmetric three-point distribution, the system potential p ( μ,

η, t ) is increasing and concave in ηk , increasing linearly in t k , but

independent of μk . 

Proof. By definition of system potential, we have 

p(D ) = [ F n ] − [ D n ] 

= E 

[
min 

(
n ∑ 

i =1 

D i , 

n ∑ 

i =1 

μi 

)]
−

n ∑ 

i =1 

E[ min (D i , μi )] 

= 

n ∑ 

i =1 

E[(D i − μi ) 
+ ] − E 

[(
n ∑ 

i =1 

D i −
n ∑ 

i =1 

μi 

)+ ]

For normal distribution, it is well known that if X ∼ N (0, σ ),

then E[ X + ] = 

σ√ 

2 π
. Therefore, we can obtain p( μ, σ) = 

∑ n 
i =1 σi √ 

2 π
−

Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib

European Journal of Operational Research (2016), http://dx.doi.org/10.10
√ ∑ n 
i =1 σ

2 
i √ 

2 π
. Hence, it follows that ∂ p( μ, σ) 

∂σk 
= 

1 √ 

2 π
(1 − σk √ ∑ n 

i =1 σ
2 
i 

) ≥ 0 ,

∂ 2 p( μ, σ) 

∂σ 2 
k 

= − 1 √ 

2 π
· 1 √ ∑ n 

i =1 σ
2 
i 

(1 − σ 2 
k ∑ n 

i =1 σ
2 
i 

) < 0 , and 

∂ p( μ, σ) 
∂μk 

= 0 . For

hree-point distribution, we take k = n without loss of generality.

t can be shown that 

 F n ] − [ D n ] = [ F n −1 ] − [ D n −1 ] 

+ E 

[
min 

[(
n −1 ∑ 

i =1 

D i −
n −1 ∑ 

i =1 

μi 

)+ 
, ηn 

]]
· t n 

+ E 

[
min 

[(
n −1 ∑ 

i =1 

μi −
n −1 ∑ 

i =1 

D i 

)+ 
, ηn 

]]
· t n 

ince [ F n −1 ] − [ D n −1 ] is independent of ηn , t n , and μn , it suffices

o examine the last two expectation terms. It is easy to see that

hese terms are increasing and concave in ηn , increasing linearly

n t n , and independent of μn . Hence, the results follows. �

Theorem 1 says that the potential or maximum value that can

e achieved by investing in flexibility becomes larger whenever the

emand variance for any product becomes larger. This makes sense

ecause risk pooling is typically most beneficial for systems with

ore uncertainty. In addition, the theorem also says that potential

s independent of changes in the demand mean of any product if

apacity is adjusted to match changes in mean demand. 

heorem 2. Consider a balanced but non-identical system of size n

uch that E[ D i ] = c i for all i ∈ A. For normal distribution, the effi-

iency f ( μ, σ, C n ) of the long chain design is increasing in μk . For

ymmetric three-point distribution, the efficiency f ( μ, η, t , C n ) of the

ong chain design is also increasing in μk . 

roof. By Theorem 1 , it suffices to show that [ C n ] − [ D n ] is in-

reasing in μk for both distribution types. Suppose [ C n ] 
′ and [ D n ] 

′ 
re the respective performances of the long chain design and the

edicated design when mean demand for product k (and capacity

or plant k ) increases from μk to μk + δ where δ > 0. We want to

how that [ C n ] 
′ − [ D n ] 

′ ≥ [ C n ] − [ D n ] , or equivalently, [ C n ] 
′ − [ C n ] ≥

 D n ] 
′ − [ D n ] . 

By definition, we know that [ D n ] = 

∑ n 
i =1 E[ min (D i , μi )] , and 

 D n ] 
′ = 

n ∑ 

i =1 ,i � = k 
E[ min (D i , μi )] + E[ min (D k + δ, μk + δ)] = [ D n ] + δ

ence, it remains to be shown that [ C n ] 
′ − [ C n ] ≥ δ. For every

ealization d , we let d 

′ = [ d 1 , . . . , d k −1 , d k + δ, d k +1 , . . . , d n ] 
T , and

 i j (d , C n ) and x ∗
i j 
(d , C n ) be a feasible solution and an optimal so-

ution, respectively, for Z(d , C n ) . Since x kk (d 

′ , C n ) = x ∗
kk 

(d , C n ) + δ
nd x i j (d 

′ , C n ) = x ∗
i j 
(d , C n ) , for all i , j � = k is a feasible solution to

(d 

′ , C n ) , it follows that [ C n ] 
′ − [ C n ] ≥ δ. 

To rule out [ C n ] 
′ − [ C n ] = δ, it suffices that there ex-

st a product–plant pair k and a demand realization d

uch that d k −1 > μk −1 , d k = μk and μk +1 > d k +1 , but

k < min (d k −1 − μk −1 , μk +1 − d k +1 ) . In this case, an in-

rease from μk to μk + δ will result in a performance

ncrease for the long chain design that is strictly larger

han δ. �

Theorem 2 is an important result as it states that long chain

fficiency (essentially how well the long chain approximates full

exibility) is increasing in the demand mean of any product. This

mplies that a product with low demand mean can be detrimen-

al to the performance of the long chain design. The reason is that

uch product might become a bottleneck in allowing idle capac-

ty in higher-numbered plants to serve extra demand for lower-

umbered products. 
ility Design in Non-Identical Systems Using Variance Information, 
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The next result follows easily from Theorem 2 , and provides up-

er and lower bounds on long chain efficiency. 

orollary 1. Consider a balanced but non-identical system of size n

uch that E[ D i ] = c i for all i ∈ A. For normal distribution, the effi-

iency of the long chain design is bounded as follows: f ( min i μi ·
 , σ, C n ) ≤ f ( μ, σ, C n ) ≤ f ( max i μi · 1 , σ, C n ) . For symmetric three-

oint distribution, the efficiency of the long chain design is sim-

larly bounded as follows: f ( min i μi · 1 , η, t , C n ) ≤ f ( μ, η, t , C n ) ≤
f ( max i μi · 1 , η, t , C n ) . 

In what follows, we examine the effect of changes in demand

ariance on long chain efficiency. For balanced but non-identical

ystems, this analysis proves to be unwieldy, especially for the

ase of normal distribution. To obtain some insights as well as to

solate the effect of demand variance, we consider the symmet-

ic three-point distribution with homogeneous support but het-

rogeneous tail probabilities, i.e. μi = μ, ηi = η = μ, for all i =
 , 2 , . . . , n . Without loss of generality, we can further assume μ =
 . Hence, we have 

 i = 

{ 

0 , with probability t i 
1 , with probability 1 − 2 t i 
2 , with probability t i 

s such, we can simplify the notation for long chain efficiency into

f (t , C n ) . Our interest is to see how f (t , C n ) behaves as t k increases

r decreases. To this end, we must first characterize the perfor-

ances [ D n ] , [ C n ] , and [ F n ] of the dedicated, the long chain, and

he full flexibility designs, respectively. 

From here onwards, whenever the integer k appears in a state-

ent, we are actually referring to some i ∈ { 1 , 2 , . . . , n } congruent

o k modulo n . For instance, plant n + 1 refers to plant 1, while

roduct 0 refers to product n . That said, we first present the fol-

owing preliminary results that will help prove our subsequent

ain results. 

emma 1. For any balanced but non-identical system of size n such

hat E[ D i ] = c i for all i ∈ A , we have 

 C n ] = 

n ∑ 

i =1 

([ C n \ { (i, i + 1) } ] − [ C n \ { (i − 1 , i ) , (i, i ) , (i, i + 1) } ]) . 

roof. This is straight-forward from Theorem 3 in Simchi-Levi and

ei (2012) . �

emma 2. For any balanced but non-identical system of size n such

hat E[ D i ] = c i for all i ∈ A , and for any i = 1 , 2 , . . . , n, we have 

 C n \ { (i, i + 1) } ] − [ C n \ { (i − 1 , i ) , (i, i ) , (i, i + 1) } ] 
= q 

0 A i +1 A i +2 · · · A i −1 π
i 

here q 

0 = [1 , 0] , A k = [ 
1 −t k t k 

t k 1 −t k 
] , and πi = [1 − t i , 1] T . 

roof. The proof is similar to those of Lemma 3 and Theorem 5 in

imchi-Levi and Wei (2012) . Note, however, that Simchi-Levi and

ei (2012) consider general discrete demand distributions but

dentical systems. �

emma 3. For j ≥ i , � j 

k = i A k = [ 

1+�
j 
k = i (1 −2 t k ) 

2 

1 −�
j 
k = i (1 −2 t k ) 

2 

1 −�
j 
k = i (1 −2 t k ) 

2 

1+�
j 
k = i (1 −2 t k ) 

2 

] . 

roof. We prove this result by induction. First, observe that the

emma is true for j = i by definition of A i . Suppose the lemma

s true for j = j 0 . We want to show that it is also true for

j = j + 1 . 
0 

Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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j 0 +1 

k = i A k = � j 0 
k = i A k · A j 0 +1 

= 

[ 

1+�
j 0 
k = i (1 −2 t k ) 

2 

1 −�
j 0 
k = i (1 −2 t k ) 

2 
1 −�

j 0 
k = i (1 −2 t k ) 

2 

1+�
j 0 
k = i (1 −2 t k ) 

2 

] 

·
[

1 − t j 0 +1 t j 0 +1 

t j 0 +1 1 − t j 0 +1 

]

= 

⎡ 

⎣ 

1+�
j 0 +1 

k = i (1 −2 t k ) 

2 

1 −�
j 0 +1 

k = i (1 −2 t k ) 

2 

1 −�
j 0 +1 

k = i (1 −2 t k ) 

2 

1+�
j 0 +1 

k = i (1 −2 t k ) 

2 

⎤ 

⎦ 

emma 4. For any balanced but non-identical system of size n such

hat E[ D i ] = c i for all i ∈ A , we have 

 F n ] = [ F n −1 ] + 1 − t n · P n −1 (n − 1) . 

here P k (w ) = P r{ ∑ k 
i =1 D i = w } is the probability that the total de-

and for the first k products is w . 

roof. By conditioning on D n , we get 

 F n ] = [ F n −1 ] + P r{ D n = 0 } · P r 

{
n −1 ∑ 

i =1 

D i > n − 1 

}
· 1 

+ P r{ D n = 1 } · 1 + P r{ D n = 2 } 
·
[

P r 

{
n −1 ∑ 

i =1 

D i ≥ n − 1 

}
· 1 + P r 

{
n −1 ∑ 

i =1 

D i < n − 1 

}
· 2 

]

= [ F n −1 ] + t n · 1 − P n −1 (n − 1) 

2 

+ (1 − 2 t n ) 

+ t n ·
[

1 + P n −1 (n − 1) 

2 

+ 

1 − P n −1 (n − 1) 

2 

· 2 

]
= [ F n −1 ] + 1 − t n · P n −1 (n − 1) 

he second equation is due to the symmetry of the distribution of
 n −1 
i =1 D i . �

It is now time to present our next main result, which charac-

erizes the performances of the dedicated, the long chain, and the

ull flexibility designs. 

heorem 3. Consider a balanced but non-identical system of size n

uch that E[ D i ] = c i for all i ∈ A. For the symmetric three-point distri-

ution with μi = 1 , ηi = 1 , for all i = 1 , 2 , . . . , n, we have 

(a) [ D n ] = n − ∑ n 
i =1 t i 

(b) [ C n ] = n − 1 
2 

∑ n 
i =1 t i − 1 

2 K(n ) 
∑ n 

i =1 
t i 

1 −2 t i 
, where K(n ) =

�n 
i =1 

(1 − 2 t i ) is the probability that all products have de-

mand equal to the mean. 

(c) [ F n ] = n − ∑ n 
i =1 t i · P i −1 (i − 1) . 

roof. For (a), the result follows easily from the fact that [ D n ] =
 n 
i =1 E[ min (D i , 1)] . 

For (b), we combine Lemmas 1 and 2 to obtain [ C n ] =
 n 
i =1 q 

0 �n 
k =1 ,k � = i A k π

k . By applying Lemma 3 and performing stan-

ard matrix multiplication, we get 

 C n ] = n − 1 

2 

n ∑ 

i =1 

t i −
1 

2 

n ∑ 

i =1 

t i · �n 
k =1 ,k � = i (1 − 2 t k ) . 

y definition of K ( n ), the result follows. 

For (c), the result follows by applying Lemma 4 recursively and

ecause [ F 1 ] = 1 . �

orollary 2. We have the following partial derivatives and difference

quations . 

(a) ∂ 
∂t n 

[ D n ] = −1 

(b) ∂ 
∂t n 

[ C n ] = − 1 
2 − 1 

2 K(n − 1) + K(n − 1) 
∑ n −1 

i =1 
t i 

1 −2 t i 

(c) ∂ 
∂t n 

[ F n ] = −P n −1 (n − 1) 
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(d) [ D n ] − [ D n −1 ] = 1 + t n · ∂ 
∂t n 

[ D n ] = 1 − t n 

(e) [ C n ] − [ C n −1 ] = 1 + t n · ∂ 
∂t n 

[ C n ] = 1 + t n (− 1 
2 − 1 

2 K(n − 1) + 

K(n − 1) 
∑ n −1 

i =1 
t i 

1 −2 t i 
) 

(f) [ F n ] − [ F n −1 ] = 1 + t n · ∂ 
∂t n 

[ F n ] = 1 − t n · P n −1 (n − 1) 

Next, we present an interesting connection between the sensi-

tivity of long chain efficiency to demand variance (represented by

tail probability) and the sensitivity of long chain efficiency to sys-

tem size. 

Theorem 4. f (t , C n ) is decreasing in t n if and only if f (t , C n ) is de-

creasing in n. 

Proof. By definition of f (t , C n ) and using Corollary 2 (d)–(f), we

have 

∂ 

∂t n 
f (t , C n ) ≤ 0 ⇔ 

∂ 

∂t n 

[ C n ] − [ D n ] 

[ F n ] − [ D n ] 
≤ 0 

⇔ 

([ F n ] − [ D n ]) · ∂ 
∂t n 

([ C n ] − [ D n ]) − ([ C n ] − [ D n ]) · ∂ 
∂t n 

([ F n ] − [ D n ]

([ F n ] − [ D n ]) 2 

≤ 0 

⇔ ([ F n ] − [ D n ]) · ([ C n ] − [ D n ]) − ([ C n −1 ] − [ D n −1 ]) 

t n 

− ([ C n ] − [ D n ]) · ([ F n ] − [ D n ]) − ([ F n −1 ] − [ D n −1 ]) 

t n 
≤ 0 

⇔ −([ F n ] − [ D n ])([ C n −1 ] − [ D n −1 ]) 

+ ([ C n ] − [ D n ])([ F n −1 ] − [ D n −1 ]) ≤ 0 

⇔ 

[ C n ] − [ D n ] 

[ F n ] − [ D n ] 
≤ [ C n −1 ] − [ D n −1 ] 

[ F n −1 ] − [ D n −1 ] 

The analysis involved to show that long chain efficiency de-

creases in system size has proven unwieldy. In fact, previous works

(Chou et al., 2010b; Simchi-Levi & Wei, 2012) are unable to prove

this relationship even for the simplest case of balanced and identi-

cal systems. Nonetheless, several numerical studies have supported

the belief that this relationship holds. To conduct similar numeri-

cal studies for our balanced but non-identical case, we first note

the following recursive equations for P k (w ) . For k = 1 , . . . , n, 

P k (1) = (1 − 2 t k ) P k −1 (0) + t k P k −1 (1) 

P k (w ) = (1 − 2 t k ) P k −1 (w − 1) + t k P k −1 (w ) 

+ t k P k −1 (w − 2) , ∀ w = 2 , . . . , k − 1 

P k (k ) = (1 − 2 t k ) P k −1 (k − 1) + 2 t k P k −1 (k − 2) 

with boundary conditions P 0 (0) = 1 , and P k (0) = �k 
i =1 

t i . For com-

pleteness, we can obtain the rest of the probabilities with P k (w ) =
P k (2 k − w ) , ∀ w = k + 1 , k + 2 , . . . , 2 k . 

The above recursive equations allow us to calculate P k ( k ) for all

k = 1 , 2 , . . . , n, which in turn allows us to calculate [ F n ] according

to Theorem 3 . From the same theorem, the values of [ D n ] and [ C n ]

are more straight-forward to calculate. For different system sizes

n = 2 , 3 , . . . , 20 , we randomly generated 10,0 0 0 sets of tail prob-

abilities t i ∈ (0 , 0 . 5) , ∀ i = 1 , 2 , . . . , n and calculated the long chain

efficiency f (t , C n ) . For all instances, we find that f (t , C n ) is, in-

deed, decreasing in n . Hence, we also have good reason to believe

that f (t , C n ) is decreasing in t n (equivalently, demand variance). 

The next result follows easily from Theorem 4 , and also pro-

vides upper and lower bounds on long chain efficiency. 

Corollary 3. For symmetric three-point distribution with μi = 1 , ηi =
1 for all i = 1 , 2 , . . . , n, suppose f (t , C n ) is decreasing in n. Then,

f ( max i t i · 1 , C n ) ≤ f (t , C n ) ≤ f ( min i t i · 1 , C n ) . 

For our next result, we refer to the edges in G as flexibility

links. We then examine the efficiency of link usage for products
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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�

ith low demand variance. Interestingly, we find that link effi-

iency decreases and goes to zero as variance decreases and goes

o zero. This implies that when a product has very low demand

ariance, including it in the long chain does not cause any harm

o system performance, but the benefit is minimal, resulting in a

oorly utilized flexibility link. 

heorem 5. Consider a balanced system of size n such that E[ D i ] = c i 
or all i ∈ A and two flexibility designs; namely, C n and C n −1 ∪
 (n, n ) } . The difference in performance [ C n ] − [ C n −1 ∪ { (n, n ) } ] is in-

reasing in t n and equals 0 when t n = 0 . 

roof. It is easy to see that [ C n −1 ∪ { (n, n ) } ] = [ C n −1 ] + (1 − t n ) .

rom Corollary 2 (e), we have 

 C n ] − [ C n −1 ] − (1 − t n ) 

= t n 

(
1 

2 

− 1 

2 

K(n − 1) + K(n − 1) 
n −1 ∑ 

i =1 

t i 
1 − 2 t i 

)
. 

xcept in the trivial case when t i = 0 for all i = 1 , 2 , . . . , n − 1 , the

oefficient of t n above is strictly positive and independent of t n .

ence, the result follows. �

.1. Discussion of results 

While the above results are interesting and useful in them-

elves, we further discuss how they can be used to develop a

ethod to create flexibility designs that can outperform the long

hain. First, Theorem 2 tells us that a product with low demand

ean can create a bottleneck if included in a long chain de-

ign. Therefore, we will likely be better off with having a few

maller chains where each chain will have relatively similar de-

and means. However, what we gain from bottleneck removal, we

ight lose due to a reduction in risk pooling. In fact, there exists

o risk pooling at all between products from different small chains.

To address this issue, we turn to Theorems 1 and 5 .

heorem 1 says that there is little value in installing flexi-

ility for products with very low demand variance. Similarly,

heorem 5 tells us that the link used to include a product with

ow demand variance in a chain (either long or short) brings mini-

al value. This finding suggests us to isolate products with low de-

and variance in order to free up previously poorly utilized links

hich can then be used to connect the small chains created by the

forementioned bottleneck removal. By doing so, we can address

he problem of reduced risk pooling. 

That said, the next question becomes how to form the smaller

hains. That is, how many small chains should there be and which

roducts should belong to which chain? To answer this, we at-

empt to combine Corollaries 1 and 3 . We do so numerically and

nd that for both normal distribution and symmetric three-point

istribution, our numerical examples consistently show that 

f ( min 

i 
μi · 1 , max 

i 
σi · 1 , C n ) ≤ f ( min 

i 
μi · 1 , σ, C n ) ≤ f ( μ, σ, C n ) 

f ( μ, σ, C n ) ≤ f ( max 
i 

μi · 1 , σ, C n ) ≤ f ( max 
i 

μi · 1 , min 

i 
σi · 1 , C n ) . 

For normal distribution, we generate 100 random scenarios.

or each scenario, we randomly sample μi ∈ [50, 100], and σi ∈
0 , 25] , ∀ i = 1 , . . . , n . Fig. 2 shows that the above bounds persist in

his set of numerical tests. For symmetric three-point distribution,

e likewise generate 100 random scenarios. For each scenario, we

andomly sample μi ∈ [50, 100], ηi ∈ [0, 50], and t i ∈ (0 , 0 . 5) , ∀ i =
 , . . . , n . Fig. 3 also confirms the above bounds on long chain effi-

iency, in this case for the three-point distribution. 

The first inequality above says that the long chain efficiency of

ny balanced but non-identical system is bounded below by the

ong chain efficiency of an associated balanced and identical sys-

em. In this system, the products all have demand mean equal to
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Fig. 2. Long chain efficiency bounds for normal distribution. 
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Fig. 3. Long chain efficiency bounds for symmetric three-point distribution. 
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he smallest demand mean min i μi in the non-identical system,

nd demand variance equal to the largest demand variance max i σ i 

n the non-identical system. This brings us back to the question of

ow to form smaller chains. The above seems to suggest a group

ndex for each small chain to indicate the amount of variability

ithin the chain, and hence whether products in that chain form

 good grouping. We define this group index as follows. 

efinition 1. For a balanced but non-identical system or subsys-

em G , we define its group coefficient of variation as follows. 
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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CV (G ) = 

max i ∈ G σi 

min i ∈ G μi 

There are two reasons to use GCV (G ) = 

max i ∈ G σi 
min i ∈ G μi 

rather than∑ 

i ∈ G σi ∑ 

i ∈ G μi 
(or some other index). First, when GCV is small, the bal-

nced and identical system associated with the lowest bound

f ( min i μi · 1 , max i σi · 1 , C n ) would already have high long chain

fficiency. Hence, it would also be good to use the long chain de-

ign for the non-identical system G . Secondly, when GCV is high,

he index clearly guides us in identifying which product to exclude
ility Design in Non-Identical Systems Using Variance Information, 
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from the system G . Specifically, the denominator suggests to re-

move the product with the lowest demand mean in order to re-

duce the GCV, which is consistent with our intention to remove

the bottleneck. On the other hand, the numerator implies concern

about the product with the largest demand variance. We shall dis-

cuss later how our proposed method will provide access to more

capacity for these high-variance products. 

In summary, the GCV index will become a key component of

our proposed method to generate good flexibility designs for bal-

anced but non-identical systems, particularly those with heteroge-

neous demand variances. In the next section, we provide more de-

tails on how this method works. 

4. The hub-and-chain method 

For a balanced but non-identical system, we seek a flexibility

design G ⊆ A × B that maximizes [ G ] such that | G | ≤ b = 2 n . As

mentioned earlier, this is a difficult stochastic mixed integer lin-

ear program, which leads us to focus on heuristic methods to find

good enough flexibility designs within reasonable computational

time. Clearly, choosing G = C n involves negligible computational

time and is a feasible design. However, as explained in the previous

section, a product with low demand mean might cause a bottle-

neck and substantially reduce the effectiveness of this long chain

design. As such, we might be better served using smaller chains

with a provision to link together these small chains. And therein

lies the inspiration for our proposed method. 

In what follows, we present our variance-based hub-and-chain

method, or VHC for short. The main idea is to partition the prod-

uct set A into s + 1 subsets G 0 , G 1 , . . . , G s such that the subsystem

corresponding to G 0 will employ a dedicated design, while the sub-

systems corresponding to G 1 , . . . , G s will each employ a long chain

design. Then, we choose a product–plant pair in each subsystem

G 1 , . . . , G s and call it the satellite pair for that subsystem. Finally,

we use the links freed up by G 0 to connect the satellite pair of G 1 

to those of G 2 , . . . , G s . We denote the resulting flexibility design as

H (G 0 , G 1 , . . . , G s ) . 

Our problem becomes to maximize [ H (G 0 , G 1 , . . . , G s )] such

that 
⋃ s 

i =0 G i = A and G i 

⋂ 

G j = ∅ , ∀ i, j = 0 , 1 , . . . , s, i � = j. This is still

a difficult problem to solve for at least two reasons. First, the ob-

jective function is the expected optimal value of another optimiza-

tion problem. As a remedy, we can consider a substitute objective

function which is to minimize the maximum of the GCVs of the

subsets G 1 , . . . , G s . That is, we want to partition such that the worst

group variability of all the subsystems is minimized. 

min z 

s.t. 

s ∑ 

j=0 

y i j = 1 , ∀ i = 1 , . . . , n 

z ≥ GCV (G j ) = 

max n 
i =1 

σi y i j 

min 

n 
i =1 μi y i j 

, ∀ j = 1 , . . . , s 

z ≥ σi 

μi 

· y i 0 ∀ i = 1 , . . . , n 

s = 1 + 

1 

2 

n ∑ 

i =1 

y i 0 

y i j ∈ { 0 , 1 } , ∀ i = 1 , . . . , n, ∀ j = 0 , 1 , . . . , s 

z ≥ 0 ; s ≥ 1 and is an integer 

where y ij decides whether product i is included in subset G j or

not. In addition, the third and fourth constraints ensure that we do

not include too many products into G 0 . The third constraint prefers

that products with low demand variability be isolated, while the

fourth constraint ensures that the total number of flexibility links

used stays at 2 n . 
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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The second reason why our problem is difficult is that the in-

eger s is also a decision variable, which depends on the number

f products selected into the set G 0 . In fact, even if we fix s , we

re still left with a difficult binary nonlinear program. To avoid the

ong computational time associated with the above optimization

roblem, we propose the VHC method detailed in Algorithm 1 . Re-

lgorithm 1 VHC method for balanced case. 

tep 1 

1: G 0 ← ∅; G 1 ← A ; n 1 ← n ; x ← 

min i ∈ G 1 σi ∑ n 
i =1 σi 

; 

2: while 
min i ∈ G 1 σi ∑ n 

i =1 σi 
< θ1 and x < θ2 do 

3: i ∗ ← argmin i ∈ G 1 σi ; G 0 ← G 0 ∪ { i ∗}; G 1 ← G 1 \{ i ∗};
4: x ← x + 

min i ∈ G 1 σi ∑ n 
i =1 σi 

; n 1 ← n 1 − 1 ; 

5: end while 

tep 2 

1: j ← 1 ; 

2: while G j � = ∅ do 

3: G j+1 ← ∅; n j+1 ← 0 ;
4: while GCV (G j ) > θ3 do 

5: i ∗ ← argmin i ∈ G j μi ; G j+1 ← G j+1 ∪ { i ∗} ; G j ← G j \{ i ∗} ;
n j+1 ← n j+1 + 1 ; 

6: end while 

7: j ← j + 1 ; 

8: end while 

9: s ← j − 1 . 

tep 3 

1: l ∗
1 

← argmax i ∈ G 1 σi ; G ← D n ; 

2: for j = 1 to s do 

3: for i = 1 to n j − 1 do 

4: G ← G ∪ { (G j (i ) , G j (i + 1)) } ; 
5: end for 

6: G ← G ∪ { (G j (n j ) , G j (1)) } ; 
7: if j � = 1 then 

8: l ∗ ← argmax i ∈ G j σi ; G ← G ∪ { (l ∗
1 
, l ∗) , (l ∗, l ∗

1 
) } ; 

9: end if 

10: end for 

all that A is the product set, GCV ( G j ) is according to Definition 1 ,

nd let G ( i ) be the i th smallest element in set G . 

The VHC method involves three main steps. In Step 1, products

ith very low demand variance will be isolated into the subset G 0 ,

n which only a dedicated flexibility design will be employed. The

ecision on how many such products will be chosen depends on

wo pre-specified parameters θ1 , θ2 ∈ (0, 1). θ1 refers to the max-

mum standard deviation for a single product relative to total stan-

ard deviation for all products in order for that single product to

e relegated to G 0 . On the other hand, θ2 refers to the maximum

roportion of total standard deviation to be allowed for a group

f products to be relegated to G 0 . Clearly, higher values of θ1 and

2 will result in more products being included in subset G 0 . All

he remaining products will be placed in subset G 1 . In Step 2, the

ubset G 1 will be further divided into more subsets G 1 , G 2 , . . . , G s 

uch that the GCV of each subset does not exceed a pre-specified

hreshold value θ3 ∈ (0, 1). Our choice of θ3 will obviously influ-

nce the number s of subsets as well as the number of elements

n each subset. Finally, in Step 3, we form the hub-and-chain de-

ign. We first let the subsystem G 0 employ a dedicated design and

ach of the subsystems G 1 , . . . , G s employ a long chain design. For

ach non-dedicated subsystem, we let the product–plant pair with

he largest demand variance be the satellite pair for that subsys-

em. Then, we label the subsystem G 1 as the hub whose satel-

ite pair will be connected (via two links) to the satellite pair of
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Table 1 

An example of a system scenario. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

μ 489 231 201 148 408 121 251 116 439 419 336 105 246 434 279 407 173 106 252 405 

σ 59 105 55 13 147 59 45 20 133 137 114 51 120 200 136 163 40 19 37 97 
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very other subsystem G 2 , . . . , G s . Note that the reason for choosing

airs with maximum demand variance as satellite pairs is because

hey are the most likely sources of excess demand and idle capac-

ty. Furthermore, this is in line with the discussion at the end of

ection 3.1 that high-variance products should be provided more

ccess to additional capacity. 

Having said that, we now demonstrate how to implement

he VHC method and benchmark against two existing methods;

amely, the long chain design and the constraint sampling method

eveloped in Chou et al. (2010b) . Before we proceed, we observe

hat the number of flexibility links utilized by the hub-and-chain

esign is not always equal to 2 n , but largely depends on our choice

f values for the parameters θ1 , θ2 , and θ3 . However, in most in-

tances, the number of links deviates from 2 n by only a small

umber. On one hand, a firm with no hard budget on flexibility

inks may want to just run the VHC method using some pre-tested

arameters values. On the other hand, a firm with a strict bud-

et of 2 n links may still use the VHC method as a subroutine in a

roader iterative method. We discuss both cases in the next sub-

ections. 

.1. Implementation: No flexibility budget 

In this section, we consider a 20 × 20 balanced but non-

dentical system. We build a simulator that randomly generates a

ystem scenario as follows. A scenario consists of 20 normally dis-

ributed product demands with μi ∈ { 100 , 101 , . . . , 500 } and σi ∈
 0 , 1 , 2 , . . . , � μi 

2 �} for i = 1 , 2 , . . . , 20 . Because the system is bal-

nced, the capacity for plant i is c i = μi for all i = 1 , 2 , . . . , 20 .

able 1 shows an example of a system scenario randomly gener-

ted by our simulator. Observe that product 4 and product 18 have

ow demand standard deviations of 13 and 19, respectively. 

We now apply the VHC method to the example in Table 1 by

etting the parameter values at θ1 = 0 . 01 , θ2 = 0 . 1 , and θ3 = 0 . 6 .

hese values were selected after a few rounds of calibration. That

aid, the output of the VHC method is illustrated in Figs. 4 and

 . Fig. 4 (a) presents the pre-established dedicated design, while

ig. 4 (b) shows how the product–plant pairs are partitioned into

he dedicated group G 0 , and the non-dedicated groups G 1 , G 2 , and

 3 . Not surprisingly, the low-variance products, including product

 and product 18, are isolated into G 0 , while G 1 contains the prod-

cts with the largest demand means. Finally, Fig. 5 shows how the

ub-and-chain design is formed. The satellite pairs for G 1 , G 2 , and

 3 are product-plant pairs 14, 15, and 6, respectively, which pre-

isely correspond to the products with the largest demand vari-

nce in each group. G 1 then serves as the hub, to whose satellite

air the satellite pairs of all other small chains G 2 and G 3 are con-

ected. 

We use our simulator to randomly generate 30 system sce-

arios like the example above. For each scenario, we implement

he VHC method (again using pre-calibrated parameter values θ1 =
 . 01 , θ2 = 0 . 1 , and θ3 = 0 . 6 ) and obtain a hub-and-chain design.

or each of the 30 scenarios, we benchmark the hub-and-chain

esign against two existing methods; namely, the long chain de-

ign and the constraint sampling method developed in Chou et al.

2010b) . For the long chain, we follow the natural sequence of the

roducts, i.e. product 1 is connected to plant 2, product 2 is con-

ected to plant 3, and so on until product n is connected to plant
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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. While the sequence of the long chain certainly impacts its per-

ormance, numerical studies have shown the performance does not

ary substantially. For the constraint sampling method, Chou et al.

2010b) applied the method to a transshipment problem. To ac-

ommodate our problem, we redefine the following components

ccordingly. 

˜ 
 (x ∗i j ) = 

10 0 0 0 ∑ 

k =1 

[
d k 

i 
c j 

max { ∑ 

i d 
k 
i 
, 
∑ 

j c j } 
]
/ 10 0 0 0 , 

˜ p i j = 

˜ E (x ∗
i j 
) ∑ 20 

i =1 

∑ 20 
j=1 ̃

 E (x ∗
i j 
) 

here the sampling probabilities ˜ p i j are used to generate 100 flex-

bility designs from which the best design is selected. 

For benchmarking purpose, we randomly generate 10,0 0 0 de-

and realizations and compute the performance (i.e. expected

ales) for each of these three methods. In addition, we also com-

ute the performance of the dedicated as well as the full flexibility

esigns, using the same 10,0 0 0 demand realizations. 

The results are summarized in Table 2 , where columns 2–6

ontain the respective performances of the dedicated, the long

hain, the full flexibility, the constraint sampling, and the hub-and-

hain designs. Columns 7–9 present the number of non-dedicated

roups, the number of products in the dedicated group, and the

umber of flexibility links used in the hub-and-chain design, re-

pectively. Finally, the last three columns show the efficiency of the

ub-and-chain design, as well as the improvement of this design

ver both the long chain and the best design from constraint sam-

ling. Here, we define improvement of the hub-and-chain design

ver a flexibility design G as 

[ VHC ] − [ D n ] 

[ G ] − [ D n ] 
− 1 = 

[ VHC ] − [ G ] 

[ G ] − [ D n ] 
. 

n all scenarios, VHC achieves at least 91% of the benefits of full

exibility. Moreover, in all but one scenario, VHC obtains at least

4% of the benefits of full flexibility, and in more than 70% of the

cenarios, at least 96%. 

Furthermore, we see from the last two columns that on aver-

ge, the hub-and-chain design improves on the long chain by 16%,

nd improves on the best design from constraint sampling by 38%.

hese are substantial improvements, which corroborate our earlier

esult that product demand variance plays a significant role in the

erformance of flexibility designs. Hence, it is not surprising that a

ethod like the VHC, which takes into account demand variances,

utperforms existing methods. In terms of computational time, the

HC method requires only at most 1% of the time required to run

nd compare 100 designs using constraint sampling. 

It is important to note the following caveats. First, the long

hain requires negligible amount of time to design and was also

esigned for a balanced and identical system. Hence, it is ex-

ected to perform worse than a variance-based method. Second,

he constraint sampling was proposed based on some restriction

n demand bounds. Therefore, heterogeneous demand variances

ith large values may adversely affect the performance of this

ethod. However, this method works even for unbalanced and

on-identical systems. 

Another observation is that since we have no flexibility budget,

ne concern is that the VHC method might use too many flexibility
ility Design in Non-Identical Systems Using Variance Information, 
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links compared to the 40 links used in the long chain. Fortunately,

a quick look at Table 2 reveals that the VHC method only use, on

average, about 1.6 more links. In fact, in some instances, the VHC

even utilizes less links than the long chain, and still obtains sub-

stantial gains. 

4.2. Implementation: With flexibility budget 

In this section, we consider a hard budget b on the number

of flexibility links that can be used. To obtain the optimal hub-

and-chain design, we implement the following iterative method

which uses Steps 2 and 3 of Algorithm 1 as a subroutine. That

is, we no longer need the parameters θ1 and θ2 to determine the

number | G 0 | of dedicated product–plant pairs. Instead, we initial-

ize | G 0 | = 2 , and later incrementally add 2 more products to G 0 ,

i.e. | G 0 | ← | G 0 | + 2 . For each value of | G 0 |, we iteratively run Steps

2 and 3 of Algorithm 1 , starting with θ3 = max n 
i =1 

σi 
μi 

. If the result-

ing number of non-dedicated subsets is s > 

b+ | G 0 | 
2 − n + 1 , then we

increment θ3 by a step size 	θ3 until we satisfy s ≤ b+ | G 0 | 
2 − n + 1 .

While a binary search might be faster, this line search for θ3 does

not depend on system size n , hence is already computationally
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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ery efficient. Finally, we choose the best among hub-and-chain

esigns generated by different values of | G 0 | based on their perfor-

ance according to 10,0 0 0 randomly selected demand realizations.

For our numerical implementation, we choose n = 20 , b =
0 , 	θ3 = 0 . 01 and let | G 0 | = 2 , 4 , . . . , 12 . As in the no flexibility

udget case, we use our simulator to randomly generate 30 sys-

em scenarios. For each scenario, we implement the above iterative

ethod. The results are summarized in Table 3 , where columns 2–

 contain the performances of the dedicated, the long chain, the

ull flexibility, and the constraint sampling designs. In columns 6–

, we report the performance of the hub-and-chain designs for

 G 0 | = 2 , 4 , and 6, respectively. For each scenario, we use an under-

ine to indicate the performance of the best hub-and-chain design.

inally, the last three columns show the efficiency of the hub-and-

hain design, as well as the improvement of this design over both

he long chain and the best design from constraint sampling. 

It is interesting to note that the performance of the hub-and-

hain design is unimodal in | G 0 |. This implies that as more prod-

cts are isolated into the dedicated group, the loss of flexibility in

his group increases to an extent no longer matched by the benefit

rom linking together a larger number of small chains. Computa-

ionally, this means that once [VHC] decreases for some | G |, we
ility Design in Non-Identical Systems Using Variance Information, 
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Table 2 

Performance comparison: No flexibility budget. 

Scenario [ D n ] [ C n ] [ F n ] [CS] [VHC] s | G 0 | |VHC| f ( μ, σ, VHC )(%) Improvement over 

C n (%) CS (%) 

1 5328 5713 5848 5731 5831 4 2 44 96 .8 30 .9 24 .8 

2 6227 6585 6643 6500 6623 3 3 39 95 .3 10 .8 45 .4 

3 4981 5273 5330 5248 5321 3 1 43 97 .4 16 .3 27 .3 

4 5750 6081 6127 5990 6111 3 2 41 95 .6 9 .2 50 .1 

5 5809 6153 6229 6151 6212 3 3 41 96 .0 17 .2 17 .7 

6 4884 5089 5112 5045 5105 3 3 41 96 .6 7 .6 37 .1 

7 4979 5295 5352 5251 5347 4 1 44 98 .6 16 .6 35 .4 

8 5498 5863 5943 5823 5928 3 2 42 96 .7 17 .8 32 .3 

9 6133 6546 6644 6511 6638 4 0 46 98 .9 22 .3 33 .4 

10 6422 6825 6878 6739 6870 4 2 42 98 .2 11 .1 41 .4 

11 6105 6470 6539 6403 6524 2 2 40 96 .4 14 .8 40 .7 

12 5882 6251 6303 6158 6280 3 4 40 94 .7 8 .0 44 .5 

13 5826 6207 6291 6150 6275 3 3 41 96 .4 17 .7 38 .5 

14 5551 5880 5992 5811 5967 3 6 37 94 .3 26 .4 59 .8 

15 5514 5886 5975 5868 5960 4 2 44 96 .8 20 .0 25 .9 

16 4596 4882 4959 4836 4941 3 4 40 95 .1 20 .8 43 .7 

17 6149 6490 6554 6426 6538 3 4 39 96 .0 14 .1 40 .4 

18 5495 5763 5796 5681 5785 3 3 40 96 .6 8 .3 56 .2 

19 5295 5598 5656 5538 5646 3 4 40 97 .2 15 .8 44 .4 

20 6004 6410 6471 6344 6457 3 2 42 97 .1 11 .8 33 .2 

21 5803 6218 6320 6191 6294 3 2 42 95 .0 18 .2 26 .6 

22 5101 5449 5524 5393 5505 4 2 43 95 .5 16 .1 38 .4 

23 5185 5502 5568 5464 5560 4 2 43 97 .8 18 .2 34 .2 

24 5136 5487 5530 5397 5516 3 1 43 96 .5 8 .3 45 .8 

25 6231 6580 6637 6522 6632 4 1 44 98 .9 15 .1 37 .7 

26 5866 6215 6279 6158 6276 3 0 44 99 .3 17 .6 40 .3 

27 4929 5289 5404 5306 5389 3 1 43 97 .0 27 .7 22 .1 

28 5138 5504 5596 5474 5582 3 2 42 96 .9 21 .3 32 .0 

29 4791 5017 5072 4976 5047 4 7 39 91 .1 13 .4 38 .4 

30 5481 5777 5831 5713 5820 3 4 39 96 .9 14 .8 46 .6 

Table 3 

Performance comparison: With flexibility budget. 

Scenario [ D n ] [ C n ] [ F n ] [ CS ] [VHC] when | G 0 | = f ( μ, σ, VHC )(%) Improvement over 

2 4 6 C n (%) CS (%) 

1 5342 5727 5862 5700 5828 5814 5790 93.6 26 .4 35 .9 

2 6232 6596 6656 6504 6636 6627 6604 95.4 11 .1 48 .7 

3 4987 5279 5336 5203 5321 5311 5291 95.7 14 .2 54 .1 

4 5750 6071 6118 5985 6102 6058 6068 95.8 9 .6 49 .9 

5 5803 6150 6233 6090 6211 6208 6187 94.8 17 .5 42 .2 

6 4884 5088 5113 5030 5106 5101 5073 96.8 8 .7 51 .6 

7 4986 5300 5354 5232 5337 5321 5296 95.1 11 .4 42 .2 

8 5496 5866 5948 5805 5924 5911 5866 94.6 15 .7 38 .2 

9 6123 6536 6622 6439 6585 6565 6537 92.7 12 .0 46 .4 

10 6422 6818 6876 6709 6861 6846 6818 96.7 10 .9 52 .7 

11 6110 6470 6538 6420 6522 6512 6493 96.3 14 .6 32 .9 

12 5885 6253 6299 6164 6280 6282 6271 95.8 8 .0 42 .3 

13 5839 6222 6303 6171 6284 6279 6263 96.0 16 .3 34 .2 

14 5558 5897 6005 5877 5983 5993 5985 97.5 28 .4 36 .4 

15 5516 5886 5979 5827 5948 5948 5927 93.3 16 .9 39 .1 

16 4598 4886 4965 4845 4937 4 94 9 4929 95.4 21 .5 41 .8 

17 6140 6481 6546 6426 6537 6531 6513 97.9 16 .5 39 .1 

18 5492 5762 5798 5692 5789 5776 5755 97.1 10 .1 48 .6 

19 5301 5597 5651 5544 5641 5641 5609 97.2 14 .8 39 .9 

20 6011 6428 6493 6347 6473 6457 6432 95.9 11 .0 37 .6 

21 5787 6199 6298 6162 6259 6259 6238 92.4 14 .4 25 .7 

22 5089 5443 5520 5368 5495 5485 5461 94.1 14 .7 45 .7 

23 5204 5518 5578 5442 5566 5558 5534 96.6 15 .3 51 .6 

24 5123 5477 5523 5361 5501 5484 5464 94.6 6 .9 58 .8 

25 6224 6571 6625 6488 6607 6588 6562 95.4 10 .4 45 .1 

26 5861 6209 6278 6116 6245 6230 6205 92.0 10 .3 50 .4 

27 4938 5291 5403 5252 5355 5363 5339 91.3 20 .4 35 .3 

28 5127 5490 5583 5440 5566 5550 5518 96.3 21 .0 40 .3 

29 4799 5027 5084 4987 5073 5070 5061 96.1 20 .4 45 .5 

30 5488 5776 5822 5691 5811 5812 5789 96.9 12 .4 59 .3 
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can terminate our iterative method. This is the reason why we only

report the performances for | G 0 | = 2 , 4 , 6 . Moreover, we observe

that the best hub-and-chain designs mostly coincide with | G 0 | = 2

or | G 0 | = 4 . Hence, the computational requirements for our VHC

method is reasonably low. 

In terms of solution quality, we can see from Table 3 that VHC

achieves at least 91% of the benefits of full flexibility in all scenar-

ios sampled. VHC also outperforms the long chain by 15% and out-

performs constraint sampling by 44%. In fact, Fig. 6 clearly shows

that the efficiency of the hub-and-chain design is better than those

of both constraint sampling and the long chain design. Further-

more, we see that the hub-and-chain design is already almost as

good as full flexibility, and leaves little room for further improve-

ment. That is, any additional flexibility link will be of little value

and hence, inefficiently utilized. Finally, we also observe that the

efficiency of the hub-and-chain design is less variable (more sta-

ble) than those of the other two methods. 

5. Case study and managerial implications 

In this section, we discuss the practical relevance of our pa-

per by demonstrating how our VHC method can be used in a case

study. Afterwards, we also discuss and summarize some manage-

rial insights that can be gleaned from our work. 

5.1. Edible oil case study 

Company Y is one of the largest producers of consumer-pack

edible oil products (e.g. soybean oil, sunflower oil) in China. These

bottled oil products are consumed in Chinese households on a

daily basis, primarily for cooking. The company’s plants located

in Guangzhou and Shenzhen have 16 filling-and-packaging lines

which can manufacture various size formats and bottle shapes.

These production lines can cope with 1.6-, 1.8-, 2-, 2.5-, and 3-L

formats for the round bottle shape, 4-, 4.5-, 5-, and 6-L formats for

both round and square bottle shapes, and 5.1999-, 5.258-, 5.435-

L promotion formats for the round bottle shape. While each line
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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an technically be re-engineered to produce all formats and bot-

le shapes, doing so will require the plants to keep many types

f machine parts to switch between lines. This is costly and will

reatly complicate the scheduling problem. Currently, each line is

uilt and designed for one format and bottle shape. The capacity of

he lines (in terms of number of bottles) will not vary significantly

ven if switched to fill another size format due to the nature of

his company’s specific filling and packaging process. 

Recently, the company’s management started an initiative to in-

egrate the operations of the two plants and to restructure the

exibility of the production lines without overinvesting in capac-

ty flexibility. The main decision lies in determining which sec-

ndary product formats and bottle sizes the production lines must

e equipped to produce. We obtained historical data on various in-

ormation about the company’s problem from their Enterprise Re-

ource Planning system (SAP) as summarized in Table 4 . This data

et includes descriptions of product formats and bottle shapes, av-

rage demands for each format and shape as well as their stan-

ard errors, and the production line capacities. We observed that

s the production lines are partially automated, their capacities are

lways adjusted to approximately match the average demands of

he dedicated products. 

To help solve Company Y’s problem, we employ our VHC

ethod as follows. We execute our algorithm with a budget of

2 links, which is double the number of production lines as the

ompany wanted. We find that the best flexibility design is to iso-

ate lines 6, 13, 15 and 16, and partition the remaining lines into

hree groups, as in Fig. 7 . The output of this hub-and-chain de-

ign is 647,850 bottles per day compared to 587,349 bottles for

he dedicated design, 627,620 bottles for the long chain design,

18,192 bottles for constraint sampling, and 652,565 bottles for

he fully flexible design. We can see that such production line re-

ngineering can bring about capacity improvement of about 60,0 0 0

ottles per day, equivalent to the capacity of production line 11

nd greater than the average capacity of 42,525 bottles per line

er day. Deploying a fully flexible design can only add at most an-

ther 50 0 0 bottles a day at enormous cost, whereas using the long
ility Design in Non-Identical Systems Using Variance Information, 
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Fig. 6. Efficiency of three flexibility designs. 

Table 4 

Data for edible oil case study. 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 

Format 4L 5.435L 2L 5.1999L 2.5L 5.258L 4.5L 5L 5L 3L 1.8L 1.6L 6L 4.5L 6L 4L 

Shape S R R R R R R S R R R R S S R R 

Mean demand 48.4 70.8 65.5 48.8 21.6 4.7 27 96 96 30 60 67.5 8.1 18 6 12 

Standard error 20.1 25.1 18.4 22 5.8 2.2 13 38.4 34.7 14 15.7 33 4 7 3 1.8 

Capacity 48.4 70.8 65.5 48.8 21.6 4.7 27 96 96 30 60 67.5 8.1 18 6 12 
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hain or constraint sampling adds less than the average capacity

er line. 

.2. Managerial insights 

We are now ready to summarize the managerial implications

hat one can take away from this paper. First, we confirm that sim-

lar to identical systems, a partially flexible design can still perform

ery well in non-identical systems. This implies that indeed a lit-

le flexibility can go a long way in designing flexible manufactur-

ng capacity. Second, demand variances of the various products, to-

ether with mean demand values, play a significant role in the per-

ormance of these partially flexible designs, particularly the long

hain. For the long chain, we find that non-identical systems create

he following asymmetries: (1) low demand mean results in a bot-

leneck effect, (2) low demand variance results in link inefficiency,

nd (3) high demand variance worsens long chain performance.

hese findings have important managerial implications such as (1)

rouping products and lines into partially flexible sub-chains ac-

ording to mean demand, (2) freeing up links from low variance

roducts, and (3) using freed up links for high variance products.

hird and last, the VHC method is computationally easy and graph-

cally intuitive that managers are likely to deploy such approach

nd its resulting flexible designs. This implies that companies do

ot need to resort to sophisticated software to implement stochas-

ic optimization or constraint sampling. With the hub-and-chain
Please cite this article as: G.A. Chua et al., Hub and Chain: Process Flexib
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esign, they can also more easily explain and communicate the ra-

ionale behind the new flexible design. 

. Conclusions 

In this paper, we study the process flexibility design problem

or non-identical systems. While the long chain design can be em-

loyed in this setting, we find that in many cases, it results in

oor performance. To devise a method that can improve on the

ong chain design, we first analytically examine the effect of non-

dentical demand distributions on system performance as well as

ong chain efficiency. We find a number of interesting results. First,

ong chain efficiency increases as the demand mean of any prod-

ct increases, suggesting a bottleneck effect caused by low de-

and means. Second, long chain efficiency decreases with the de-

and variance of any product, implying the benefit of providing

igh-variance products with access to more capacity. Third, the ef-

ciency of a flexibility link decreases as demand variance of the

roduct for which the link is used decreases. This suggests that the

ink can be utilized more profitably elsewhere, such as for products

ith high demand variance. 

With these insights, we develop a simple and graphically in-

uitive VHC method to generate flexible designs for non-identical

ystems. We consider two cases, with and without a fixed flex-

bility budget. In both cases, we show numerically that VHC al-

eady achieves at least 91% of the benefits of full flexibility. More-

ver, VHC is, on average, 15% better than the long chain, and 38%
ility Design in Non-Identical Systems Using Variance Information, 
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Fig. 7. The hub-and-chain design for edible oil case study. 
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better than constraint sampling. Furthermore, VHC uses only 1%

of the computational requirements of the constraint sampling

method. Finally, we implement the VHC method on a case study

in the edible oil industry in China and find substantial benefits

brought about by the hub-and-chain design. We also summarize

some managerial insights that can be gleaned from this work. 
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