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A B S T R A C T

We consider a retailer, selling a perishable product with short shelf-life and uncertain demand, facing these key
decisions: (a) whether to discount old(er) items, (b) how much discount to offer, and (c) what should be the
replenishment policy. In order to better understand the impact of consumer behavior and shelf-life on these
decisions, we consider four models. In Model A, the product has a shelf life of two periods and the retailer
decides whether or not to offer a discount. The amount of discount is exogenous and assumed to be large enough
so that all the customers prefer the old product to the new one when a discount is offered. Based on several
numerical examples, we find that a threshold discounting policy, in which a discount is offered if and only if the
inventory of old product is below a threshold, is optimal. In Model B, the retailer also decides how much
discount to offer. Model C extends Model B and considers a new pool of customers who are willing to purchase
from the retailer when a discount is offered. In both Models B and C, the product has a shelf-life of two periods
while Model D explores what happens with longer shelf-life. We analyze and compare these models to present
different managerial insights.

1. Introduction

Discounting policies can have important strategic implications for
retailers. Recently, JC Penney, a well-known departmental store chain
in the US instituted a “no sale” policy by having “everyday low pricing”
(EDLP) and getting rid of sales through coupons/discounts. However,
they suffered a backlash because consumers were not impressed with
the move and had to go back to their old pricing strategy
(Mourdoukoutas, 2013; Thau, 2013; Kapner, 2013). There are numer-
ous other instances, e.g., perishable products such as milk and bread,
where discounting is prevalent1.

The discounting decision, especially in the context of promotional
pricing vs. EDLP, has been studied in the past, largely in the marketing
literature (e.g., see Ellickson and Misra (2008); Lal and Rao (1997),
and the references contained therein). These research works largely
analyze the problem at the “macro level” by considering it at the firm/
store level with a wide range of products and typically hundreds of
stock keeping units (SKUs). They also generally ignore operational
aspects such as inventory issues and a limited shelf-life of the product.
In this paper, we perform a “micro level” analysis by examining the
discounting decision at the product level in which we consider both the

replenishment and discounting policies in conjunction. While some
research (see Section 2 for details) in operations management (OM)
has looked at these policies together, we consider the operational
factors and/or consumer behavior in more detail and granularity vis-a-
vis these works2. In this regard, our paper complements research from
both marketing and OM literatures, and integrates important opera-
tional elements with the discounting decision by examining different
types of consumer behavior in detail.

We consider a retailer selling a perishable product with limited
shelf-life under four different models. She reviews her inventory
periodically and the lead time for getting the product is assumed to
be zero. In Model A, the base model, we focus on the decision of
whether a discount should be offered or not. The shelf-life of the
product is two periods. The amount of discount is exogenous and
assumed to be large enough so that when the old product (of age one) is
discounted, all the customers prefer it to the new one (of age zero).
Model B also considers the decision of how much to discount. It does so
by modeling consumer behavior in more detail. The fraction of
customers preferring the old product to the new one depends on the
amount of discount that is offered. Model C further extends Model B by
considering a new pool of customers who are willing to purchase from
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the retailer when a discount is offered. The size of this pool depends
both on the size of original customers and the amount of discount.
Models A-C can be considered as incorporating different kinds of
customers: in Model A, customers only look at whether the discount is
offered; in model B, the level of discount is also important to them;
while Model C considers additional new customers from discounting.
While all these models assume a shelf-life of two periods, Model D
extends Model A in another dimension by considering longer product
shelf-life. Thus, we examine and compare the four models (Models A-
D) to better understand how consumer behavior and product shelf-life
affect the retailer's discounting and replenishment decisions and her
profits.

The rest of the paper is organized as follows. In Section 2, we
discuss the related literature. In Section 3, we describe the four
different models mentioned above. Section 4 analyzes the models and
presents different observations based on our numerical analyses.
Finally, we conclude in Section 5. Throughout the paper, we use the
terms “increasing” and “decreasing” in the weak sense.

2. Literature survey

The research in this paper is mainly related to the literature on
perishable inventory management, joint optimization of pricing and
inventory, and modeling of customer behavior for making optimal
pricing and inventory decisions.

First, we consider the research on perishable inventory manage-
ment. Nahmias (1975), a pioneering work in this area, finds the
optimal inventory policy for a product with a multi-period shelf life.
He shows that the decision of when to order depends only on the total
number of old units but how much to order does depend on the
distribution of old units across different ages. Pierskalla (1969) uses
dynamic programing to analyze inventory issues when perishable
products have random lifetimes. Pierskalla and Roach (1972) find
optimal issuing policies when there is a limited supply of perishable
products. When demand is fully back-ordered they show that first-in-
first-out (FIFO) policies are optimal. Nahmias (1982, 2011) provides a
review of the perishable goods supply chain literature with models that
consider different features such as e.g., random vs. deterministic
lifetime, stochastic vs. deterministic demand etc.). Deniz et al. (2010)
consider heuristics for inventory issuing and replenishment policies
when perishable products are substitutable, while Haijema (2014) also
analyzes optimal disposal policies and finds how much value is added
by these policies. We model the impact of pricing/discounting deci-
sions on demand and replenishment decisions, which none of the
above articles consider.

Second, we consider research involving joint optimization of pricing
and inventory decisions. Petruzzi and Dada (1999) presents a review of
different price-setting newsvendor models. Zabel (1970) considers a
seller with a finite horizon, and shows that the optimal price is
decreasing both in time and in the on-hand inventory, under certain
conditions. Under a base stock list price (BSLP) policy, if the inventory
is below a threshold, then it is brought up to this level and the optimal
price is charged; otherwise, there is no production and the product is
sold at a discount (that depends on the amount of inventory). Zabel
(1970) shows that the BSLP policy is optimal under certain conditions.
Thowsen (1975) also considers back-ordering and shows that BSLP
policy can still be optimal. Federgruen and Heching (1999) find that
BSLP is optimal even under infinite horizon provided the seller has
price flexibility, i.e., prices are allowed to increase over time. Li et al.
(2009) also analyze joint pricing and inventory control for perishable
products but they do not consider how customers choose between new
and old products. Chen and Smichi-Levi (2004) consider ordering costs
in the above model and show that the (s, S, p) policy, which is similar to
the standard (s, S) policy but the price charged depends on the on-hand
inventory, is optimal. They also conclude that, unlike in the BSLP, the
price function is not necessarily decreasing in the inventory level. Hopp

and Xu (2006) consider a single period problem with dynamic pricing.
The customer arrival rate is stochastic, and is assumed to follow a
geometric Brownian motion. They find the optimal pricing policy and
order quantity, and show that pricing dynamically can result in
significant higher profits.

Some research works, which include Rajan et al. (1992) and Cohen
(2006), have analyzed pricing and/or replenishment policies in the
context of physically decaying perishable products (e.g., agricultural
produce). Elmaghraby and Keskinocak (2003) provide a detailed
review of dynamic pricing in different scenarios involving inventory
issues (e.g., strategic vs. myopic customers, replenishment vs. non-
replenishment of inventory etc.). Some recent research works in this
area include Avinadav et al. (2013), Herbon et al. (2014), Chew et al.
(2014), van Donselaar et al. (2016), Pauls-Worm et al. (2016), Chen
(2017), and Feng et al. (2017). They do not model the discounting and/
or replenishment decisions in the manner in which we do in this paper.
In particular, we consider lost sales and explicitly model the shift of
customers from new to old products due to discounting of the latter by
the retailer.

Finally, we consider work that involves modeling of customer
behavior for making better pricing and inventory decisions. Ferguson
and Koenigsberg (2007) consider a two-period model with pricing and
inventory optimization of new and old products. A different version of
the problem, in which the new and old products cannot be simulta-
neously sold, is analyzed by Li et al. (2012). They suggest that there is a
need for models aimed at operational decisions, which consider
simultaneous sales of both new and old products. This paper considers
this aspect. Our work comes close to Sainathan (2013) who consider
pricing and inventory optimization and use a vertical differentiation
model for customers having different perceptions of quality for new
and old products. However, we specifically study how discounting
affects aggregate demand from customers and focus on the structural
properties, which we derive from several numerical examples, invol-
ving the optimal decisions. We also derive some insights on how the
optimization problem for a problem with more than two-period shelf-
life can be simplified, and find that the profit reduction from
implementing a simpler policy is often insignificant (see Model D in
Section 4.4).

In summary, some key aspects, which have not been considered
together before to the best of our knowledge, make this paper unique:
(i) focus on discounting decisions and how they affect and are affected
by consumer behavior, and (ii) analyze how discounting decisions
affect and are affected by inventory replenishment decisions.

3. General model

We consider a retailer, who follows periodic inventory replenish-
ment, selling a perishable product with a shelf life of n periods over a
finite horizon of T n≫ periods. Therefore, in any period, she sells n
versions of the product with ages n0, 1, …, − 1, where age 0 refers to
the new units, while the others refer to older units of various ages.
Unsold units of age i at the end of a period get transferred to the next
period as units of age i + 1, for i n= 0, 1, …, − 2. Unsold units of age
n − 1 are discarded at the end of a period at zero salvage value, without
any loss of generality. The retailer can only procure new units and the
cost of procurement per unit is c.

We count time backwards so that period T denotes the beginning of
the horizon whereas period 0 refers to the end of the horizon. At the
beginning of period t (t T T= , − 1, …, 1), the retailer reviews the
inventory levels of old items, denoted by s s ss = [ , , …, ]′t t t nt ,1 ,2 , −1 .
Subsequently, she decides the quantity qt of new units to order and
whether or not to offer a discount x > 0t for the older units. For
simplicity, we assume that the procurement lead time is zero and the
retailer either discounts all available units of a certain age or none of
them. The retailer makes these decisions in order to maximize her
expected profit-to-go, i.e. the total expected profit from period t until
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the end of the horizon. We denote the optimal expected profit-to-go
function in period t by π s( )t t . If the discount is not offered for units of
age i i n( = 0, 1, …, − 1), then each of them is sold at an exogenous unit
price p. We further suppose that no discounts will be given for new
units.

We examine this problem under different settings in Sections 3.1–
3.4 below. Models A-C, which are considered in Sections 3.1–3.3
respectively, incorporate different kinds of customers: in Model A,
customers only look at whether the discount is offered; in model B, the
level of discount is also important to them; while Model C considers
additional new customers from discounting. Model D, in Section 3.4,
extends Model A in another dimension by considering longer product
shelf-life. Thus, we examine and compare the four models (Models A-
D) to better understand how consumer behavior and product shelf-life
affect the retailer's discounting and replenishment decisions and her
profits. For all these models, we assume that when no discount is
offered, customers would discern and prefer to purchase the most
recent (new) units. Also, we assume that there is a base demand Dt,
faced by the retailer when none of the units are discounted, in period t
with pdf ϕ and cdf Φ; any unsatisfied demand is lost. Next, we describe
each model in detail.

3.1. Model A

Here, we assume that (a) the shelf life is two periods (n=2), and (b)
the discount x δ t= > 0, ∀t is exogenous and large enough so that all
customers from the base demand Dt will strictly prefer the older units
(of age 1) over the new units. For the sake of brevity, we use st to
denote the scalar inventory level of older units at the beginning of
period t. We let y ∈ {0, 1}t be the binary variable that indicates whether
or not the retailer discounts the older units in period t. Then, the
optimal expected profit-to-go function can be written recursively as
follows.

π s pE q s D δyE s D

cq E π q D s y t

π

( ) = max { [min( + , )] − [min( , )]

− + [ (( − ( − ) ) )]}, ∀ > 0;

(.) = 0.

t t
q y t t t t t t

t t t t t t

≥0, ∈{0,1}

−1
+ +

0

t t

(1)

The first term inside the maximization accounts for the expected
revenue in period t without discounting; the second term pertains to
the expected loss in revenue in period t due to discounting; the third
term refers to the procurement cost; and the fourth term is the
expectation over Dt of the optimal expected profit-to-go function in
period t − 1.

3.2. Model B

This model is a generalization of Model A in which the discount
x ≥ 0t is also a decision variable. This fundamentally alters the manner
by which base demand affects the demand for units of each age. In
particular, we let α x( )t be the fraction of base demand Dt that
prefers the old units to new units if the discount offered is xt.
The rest of the base demand prefers new units to old units. Because
qt and st are the number of new units and the number of old
units, respectively, we can characterize the sales of new and old
units as q α x D α x D smin( , (1 − ( )) + ( ( ) − ) )t t t t t t

+ and s α x Dmin( , ( ) +t t t

α x D q((1 − ( )) − ) )t t t
+ , respectively. Note that the sum of these two

sales quantities is q s Dmin( + , )t t t , which is also the total units sold in
Model A. One advantage of this model is that it does not assume any
priority in demand fulfillment among customers, hence we do not need
to model the sequence in which the customers arrive at the retailer. The
only assumption we make on α x( )t is that it is nondecreasing in xt and
α(0) = 0. We can observe that Model A is a special case in which α x( )t is

a step function, equal to 0 for all x δ<t and equal to 1 for all x δ≥t .
Similar to Model A, the optimal expected profit-to-go function can be
written as follows.

π s pE q s D x E s α x

D α x D q

cq E π q α x D α x D s t

π

( ) = max { [min( + , )] − [min( , ( )

+ ((1 − ( )) − ) )]

− + [ (( − (1 − ( )) − ( ( ) − ) ) )]}, ∀ > 0;

(.) = 0.

t t
q x p

t t t t t t

t t t t

t t t t t t t t

≥0, ∈[0, ]

+

−1
+ +

0

t t

(2)

The equations in (2) have similar interpretation as those in (1).
Alternatively, we can also write the optimal expected profit-to-go
function as follows.

π s pE q α x D α x D s p x

E s α x D α x D q

cq E π q α x D α x D s t

π

( ) = max { [min( , (1 − ( )) + ( ( ) − ) )] + ( − )

[min( , ( ) + ((1 − ( )) − ) )]

− + [ (( − (1 − ( )) − ( ( ) − ) ) )]}, ∀ > 0;

(.) = 0.

t t
q x p

t t t t t t t

t t t t t t

t t t t t t t t

≥0, ∈[0, ]
+

+

−1
+ +

0

t t

(3)

The first term inside the maximization accounts for the expected
revenue from new units in period t; the second term pertains to the
expected revenue from old units in period t; the third term refers to the
procurement cost; and the fourth term is the expectation over Dt of the
optimal expected profit-to-go function in period t − 1. While the above
two formulations are equivalent, the latter helps us in our formulation
in Model C.

3.3. Model C

Here, we further generalize Model B so that there is a new pool of
customers (in addition to base demand Dt) who are attracted to the
retailer mainly because of the discount. The size of this pool is
increasing in the discount xt. It also increases in the number of
customers from the base demand who are attracted to the old units
because of the discount, α x D( )t t, and subsequently advertise about it
through direct word-of-mouth to this pool. Specifically, we let the size
of this pool be bx α x D· ( )t t t where b ≥ 0 is the indicator of the effective-
ness of the word-of-mouth advertising. However, these customers will
not buy the new units in the event that the old units are out of stock.
We define f γ b x D s( , , , , )t t t to be the effective sales from this new pool,
which is the number of customers from this pool whose demand is
satisfied. This quantity will depend on the sequence in which the
customers in this pool and the customers from the base demand who
prefer old units arrive. We model this aspect through a parameter
γ ∈ [0, 1] which denotes the fraction of customers from this pool who
arrive before the base demand (equivalently, the fraction of such
customers who arrive after the base demand is γ1 − ). We let Model
C1 (γ = 1) and Model C2 (γ = 0) be the following extreme cases,
respectively: (1) all customers from the new pool arrive first, and (2)
all customer from the new pool arrive last. Then, it can be shown that
f γ b x D s γbx α x D s γ bx α x D s γbx α x D α x D( , , , , ) = min( ( ) , ) + min((1 − ) ( ) , ( − ( ) − ( ) ) )t t t t t t t t t t t t t t t t + .
The first (second) term corresponds to sales of old units from the
customers in the new pool who arrive before (after) the base demand.
The number of customers who prefer new units to old units is
unchanged from Model B and remains equal to α x D(1 − ( ))t t. Note that
when b=0, f (. ) = 0 and we obtain Model B as a special case. Next,
similar to (3) in Section 3.2, we formulate the optimal expected profit-
to-go as follows.
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π s pE q α x D α x D

f γ b x D s s p x E s α x D
f γ b x D s α x D q cq

E π q α x D

α x D f γ b x D s s t

π
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t t
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t t t t t

t t t t t t t t

t t t t t t t

t t t t

t t t t t t

≥0, ∈[0, ]
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+

−1

+ +

0

t t

(4)

In (4), because f γ b x D s s( , , , , ) ≤t t t t, the term α x D f γ b x D s s( ( ) + ( , , , , ) − )t t t t t t
+

is the number of customers from the base demand who prefer the old
units but are unable to purchase them.

3.4. Model D

This model generalizes Model A in a different direction so that the
product has a general shelf life n ≥ 2. In order to study better the effect of
shelf life on the retailer's optimal decisions and profits, we make this
generalization fromModel A (instead of Model B or Model C). Recall that
x δ= > 0t is the exogenous discount and the state vector st refers to the
inventory levels of units of various ages at the beginning of period t. The
retailer has to decide not only the order quantity qt, but also whether or
not to discount units of each age i (i n= 1, 2, …, − 1). We denote the
discounting decisions by y ∈ {0, 1}n

t
−1. Next, we describe how the

demand for units of different ages are related to the base demand and
the discounting decisions. Customers make purchase decisions, first
based on price and then on the age of the units. Specifically, if there are
units of multiple ages that are discounted, customers will prefer the most
recent of these discounted units. For the purpose of simplifying the
formulation, we denote M M MM = [ , , …, ]′t t t nt ,0 ,1 , −2 as the demand vector
for units of ages 0 to n − 2. We now characterize Mt as a function of
D s y, ,t t t, and qt below.

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

M D s y

M D s y y D q s s y

y i n

= − ∑

= − ∑ + − − ∑ − ∑

(1 − ), ∀ = 1, …, − 2

t t j
n

t j t j

t i t j
i

t j t j t i t t j
i

t j j i
n

t j t j

t i

,0 =1
−1

, ,

+

, =1
−1

, ,

+

, =1
−1

, = +1
−1

, ,

+

,

The demand for new units Mt,0 comes from the base demand in
excess of all discounted units, regardless of age. For older units of age i,
the demand Mt i, depends on whether these units are discounted or not.
If they are discounted (i.e. y = 1t i, ), then it is the base demand in excess
of all newer units on discount. Otherwise, it is the base demand in
excess of all newer units (whether discounted or not) and all older
discounted units. We can then write the formulation of the optimal
expected profit-to-go as follows.

⎪
⎪⎧⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥∑ ∑π pE q s D δE s y D

cq E π q s s t

π

s

M

( ) = max min + , − min ,

− + [ (([ , , …, ]′ − ) )]}, ∀ > 0;

(.) = 0.

t
q

t
i

n

t i t
i

n

t i t i t

t t t t t n

t
y

t

≥0, ∈{0,1} =1

−1

,
=1

−1

, ,

−1 ,1 , −2
+

0

t
n

t
−1

(5)

The first three terms inside the maximization in (5) are similar to those
in (1). The argument in the fourth term captures the state transforma-
tion of the inventory levels from period t to period t − 1.

4. Analysis

We use the framework of dynamic programming to find the optimal
decisions3 for the retailer in any period. We first start with the analysis

and results of Model A.

4.1. Model A

Model A is the base model with two-period shelf life (i.e. n=2) and
discount x δ= > 0t large enough to attract all customers to prefer the
older units over new units. We examine this model for various discrete
demand distributions such as uniform, binomial and negative-bino-
mial4. We report our findings below.

4.1.1. Structure of optimal policy
Figs. 1, 2 and 3 show the effect of the inventory of old units on the

optimal order quantity, discounting policy, and profit for uniformly
distributed demand.5 First, we find that the optimal order quantity is
decreasing in inventory of old units. This is consistent with standard
inventory literature as more leftover inventory means less need to
procure new units. Second, the optimal discounting policy is a thresh-
old policy such that a discount is offered if the inventory of old units
falls below the threshold and no discount is offered otherwise. At first,
this result seems counter-intuitive because more inventory usually
suggests higher propensity to give a discount. However, the opposite is
true here because the discount serves a different purpose which is to
redirect customers from new units to old units, thereby freeing up the
new units for future demand and not wasting the soon-to-perish old
units. It follows that discount is more likely to be given when there are
more new units, which from the first result occurs when there are less

Fig. 1. Optimal order quantity with D U∼ [0, 25]t .

Fig. 2. Optimal discounting policy with D U∼ [0, 25]t .

3 We find these values numerically in cases involving specific examples; in such cases,
these values are approximately optimal even though we refer to them as optimal values
for the sake of conciseness. We thank an anonymous reviewer for indicating this point.

4 We use these distributions because they are discrete valued and computationally
simple to handle.

5 We observe similar results for binomial and negative-binomial distributions.
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old units. As seen in Fig. 1, there is a also significant decrease in
optimal order quantity at the threshold level6. Finally, we observe that
optimal profit is an increasing piecewise concave function (with two
pieces) in the inventory of old units. This makes sense as more
inventory means more resources7 and less need to procure new units,
hence higher profits. Concavity implies diminishing marginal value
while the piecewise nature is due to the optimal discounting policy
being a threshold policy.

4.1.2. Sensitivity analysis
We now examine the effect of demand uncertainty (i.e. standard

deviation) on the structure of the optimal policy. We consider the
binomial and negative-binomial distributions, holding the mean con-
stant while changing the parameters to create low, medium and high
levels of demand standard deviation. Figs. 4a, 5a and 6a display the
results for the binomial distribution while Figs. 4b, 5b and 6b show the
ones for the negative-binomial distribution.

Figs. 4a and 4b show that the behavior of the optimal order quantity
as a function of inventory of old units is unaffected by demand
standard deviation. However, the difference in optimal order quantities
before and after the threshold increases in demand standard deviation.
Moreover, we observe that for a given inventory of old units, the
optimal order quantity is increasing in demand standard deviation.

Next, Figs. 5a and 5b tell us that the threshold discounting policy
remains optimal regardless of demand standard deviation. However,
we find that the threshold level is a increasing function of demand
standard deviation. This means that as demand becomes more
uncertain, the retailer is more likely to offer a discount at any given
inventory level of old units.

Finally, Figs. 6a and 6b suggest that the optimal profit is still an
increasing piecewise concave function whatever the demand standard
deviation. However, for a given inventory of old units, the optimal
profit is decreasing in demand standard deviation. This implies that
more demand uncertainty harms the retailer more.

We also study the unit procurement cost c and discount δ on the
optimal discounting policy. Fig. 7 summarizes the values of c and δ for
which the retailer will give a discount at some inventory level of old
units and the values for which the retailer never discounts. These
regions are denoted in the figure as D and ND. Interestingly, we find
that for a given δ, there exist a lower bound and an upper bound on c
for the region D. This is because when the unit procurement cost is too
high, offering the discount may lead to negative profit. On the other
hand, when unit procurement cost is too low, the profit level is
generally high and offering discount may lead to large profit losses.

Furthermore, we find that as δ increases, the lower bound increases
while the upper bound decreases. This makes sense because the higher
the discount needed to attract all customers to buy old units, the less
likely it is for the retailer to offer the discount. Finally, we observe that
even in the case where c δ1 − < , there exists an inventory level of old
units in which it is optimal for the retailer to offer the discount. Hence,
even if the profit margin is less than the discount, the retail may still
offer the discount.

Based on the results presented above, we summarize the following
observations about Model A:

Observation 1. The optimal discounting policy is a threshold policy.
The optimal order quantity decreases in the inventory of old product
and decreases significantly at the threshold level. The optimal profit is
increasing and piecewise concave in the inventory of old product.

Observation 2. The optimal threshold level increases in demand
standard deviation. The decrease in optimal order quantity at the
threshold level increases in demand standard deviation. The optimal
profit decreases in demand standard deviation.

Remark 1. We also considered a model of partial discounting where
the retailer decides how many of the old units to discount at δ. This
contrasts with Model A which considers a binary decision whether to
discount all the old units or none at all. Interestingly, we find that the
partial discounting policy is never optimal. That is, it is optimal for the
retailer to discount all or nothing.

4.2. Model B

The difference in Model B from Model A is that instead of an all-or-
nothing discount in which either all or none of the customers prefer old
units to new ones, we now consider discounts x so that a fraction α x( )
prefers old units. For simplicity, we define α x ax( ) ≡ in which a
measures the discount sensitivity of customers. Next, we describe the
results from our analysis of Model B.

4.2.1. Structure of Optimal Policy
As in Section 4.1, if there is some discounting, we find that the

optimal profit is an increasing piecewise concave function (with two
pieces) in the inventory of the old product for different types of demand
distributions and parametric values. Further, the order quantity also
decreases with more old units. However, Fig. 8a shows that the optimal
discount increases first and then decreases (to zero). This non-
monotonicity of discount in the inventory of old product st is explained
as follows. There are two effects of discounting in period t: (i) loss in
profit in that period from discounting old units and (ii) gain in profit in
the next period, i.e., period t − 1, from having a higher inventory
(because πt−1 is increasing in st−1). The loss in profit is high when st is
high because more units are discounted on average, while the gain in
profit is low when st is low because st−1 does not increase much from
discounting more; these factors explain why discount is low (or zero)
when st takes low or high values. On the other hand when st is
intermediate, a high discount is offered.

In Figure 8a, when the discount decreases, it reduces immediately
to zero. However, that is not always true. Fig. 8b shows a scenario in
which discount reduces from state 1 to state 2 but does not become
zero. For this reason, we refer to the threshold in Model B as the state
at which the discounts stops increasing and starts reducing (e.g., the
threshold in Fig. 8b is state 1). Next, we examine how the optimal
discounting policy changes with a key parameter of Model B: the
discount sensitivity a.8

Fig. 3. Optimal profit with D U∼ [0, 25]t .

6 When there are too many old units, the retailer does not discount because she incurs
too much loss from doing that. She would rather reduce the order quantity significantly.

7 Note that the cost for this inventory is already sunk and does not affect the profit.

8 For conciseness, we do not discuss about sensitivity analysis with respect to cost c
because we already consider it with Model A in Section 4.1 and we find that the results
here are similar based on our numerical examples.
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4.2.2. Sensitivity analysis
Fig. 9 shows the optimal discounting policies under different values

of a. We find that as a increases, the threshold increases. As customers
become more sensitive to discounts, the retailer offers discounts under
more states. However, we note that for a given state, the discount itself
may increase or decrease in a. For instance, when a increases from 1
to 3, the discount decreases from 14% to 6% in state 1 while it increases
from 0% to 10% in state 2. Next, we compare Model B with Model A.

4.2.3. Comparison of model B with model A
In order to make a meaningful comparison between the two

models, we consider examples with δ a= 1/ (so that when a discount
of δ is offered, all the customers prefer old units) and all other
parameters being identical for the two models. Fig. 10 shows the
optimal profits in Models A and B for one such example. We find that
the optimal profit in Model B exceeds that of Model A because the
discounting decisions in Model A (discounts of zero and δ) can be easily

Fig. 4. Optimal order quantity for various demand distributions with fixed mean 12.5, (a) Binomial demand distributions, (b) Negative-binomial demand distributions.

Fig. 5. Optimal threshold level for various demand distributions with fixed mean 12.5, (a) Binomial demand distributions, (b) Negative-binomial demand distributions.

Fig. 6. Optimal profit for various demand distributions with fixed mean 12.5, (a) Binomial demand distributions, (b) Negative-binomial demand distributions.
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reciprocated in Model B (with discounts of zero and a1/ respectively).
However, we find that the difference in optimal profits between the two
models is not significant (less than 2%). We find that this difference is
also insignificant for examples with other parametric values and
demand distributions, the details of which we omit for conciseness.

Fig. 11 shows the corresponding optimal discounting policies in the
two models. We find that discounts are offered in more states under
Model B than in Model A. This result is explained as follows: the
flexibility to offer lower discounts (than δ) enables the retailer to give a
discount in Model B even when the inventory of old product is higher
than the threshold for Model A. Based on our numerical results, we find
that the threshold value for Model B is always greater than or equal to
the threshold for Model A.

Based on the results presented above and those from other numerical
examples, we summarize the following observation about Model B:

Observation 3. The optimal discount first increases and then
decreases (eventually to zero) in the inventory of old product. As the
discount sensitivity a increases, (i) the threshold increases but (ii) the
discount for a given state may increase or decrease. Finally, we find by
comparing Model B with Model A that (i) the increase in profit in
Model B is generally not significant and (ii) the threshold in Model B is
higher.

Fig. 9. Variation of optimal order quantity and discount with inventory of old product for a=1, 3, and 5 (from left to right).

Fig. 7. Impact of procurement cost and discount on optimal discounting policy with
D U∼ [0, 9]t .

Fig. 8. Optimal discounting policy with D U∼ [0, 14]t , (a) a=3, c=0.5, (b) a=5, c=0.45.

Fig. 10. Optimal profit in Model A and Model B; δ = 33%, a=3, c=0.5, and D U∼ [0, 19]t .
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4.3. Model C

The difference in Model C from Model B is that there is now a new

pool of customers, whose size is given by bxα x D( ) in which b > 0 is a
measure of advertising effectiveness (about the discounted sale of the
old product), x is the discount, and α x D( ) is the number of customers
from the original demand who prefer the old product to new product.
We parameterize the fraction of this new pool of customers, the early-
bird bargain hunters, who get the old product before those from the
original demand by γ. Next, we discuss about the results from our
analysis of Model C.

4.3.1. Structure of optimal policy
Fig. 12 shows an example of how the optimal profit changes in

Model C. As in Models A and B, it is increasing in the inventory of old
product; however, unlike those models, it is now concave and smooth
instead of being piecewise concave with two pieces when γ is too low or
high (e.g., γ = 0, 1 in the figure). Fig. 13a shows how the optimal
discount changes with the inventory of old product. Again, we find that,
unlike in Model B in which it first increases and then reduces to zero
(see Figs. 8a and 8b), it is always increasing. This result can be
explained as follows: with γ = 1 and b=3, the significant amount of new
pool of customers makes it profitable for the retailer to offer discount
even when the inventory of old product is high. While this result is
generally true, it is not always the case. Even with such high γ and b
values, the demand distribution is also important. Fig. 13b shows a
scenario in which the optimal discount rate increases and then
decreases for a general demand distribution. Next, we analyze how
the optimal policy and profits change with two key parameters:
advertising effectiveness b and the fraction of early-bird bargain
hunters γ.

4.3.2. Sensitivity analysis
First, we first consider the variation of b. Fig. 14a shows how the

optimal profit changes with the inventory of old product under
different values of b. We find that it is increasing, and it becomes a
piecewise concave function (with two pieces) for low values of b while it
is a smooth concave function for high values of b. That is because as
b → 0, Model C becomes equivalent to Model B. Fig. 14b illustrates
how the optimal profit for a given state (the inventory of old product is
five units) changes with b. We find that it is convex (concave) in b when
b is low (high), which indicates increasing returns (diminishing
returns). Basically, increasing the advertising effectiveness is much
more beneficial when it is low than when it is high.

Fig. 15a demonstrates how the optimal discount changes with the
inventory of old product under different values of b. We find that the
variation of optimal discounting policy has a complicated pattern. For
low values of b, Model B becomes similar to Model C, and as the
inventory of old product increases, the optimal discount first increases

Fig. 12. Variation of optimal profit with inventory of old product, for different γ's.

Fig. 13. Optimal discounting policy as inventory of old product increases, (a) Discount monotonically increases, (b) Discount first increases and then decreases.

Fig. 11. Optimal discounting policies in Model A and Model B; δ = 33%, a=3, c=0.5, and
D U∼ [0, 15]t .

G.A. Chua et al. International Journal of Production Economics 186 (2017) 8–20

15



and then decreases to zero. For high values of b, the optimal discount is
always increasing. In our numerical examples, we find that this pattern is
robust and holds across different values of γ, c, and different distribu-
tions. Fig. 15b shows that the optimal discount for a given state (the
inventory of old product is seven) is non-monotone in b: it first increases
and then decreases. As the advertising effectiveness increases, initially,
more discount is offered to attract even more customers from the new
pool to buy the old product. However, when it increases even further, less
discount is sufficient to obtain the required amount of new pool of
customers. Finally, Fig. 16 shows that the order quantity is increasing in
b for a given state (the inventory of old product is five) because as b
increases, selling the old product becomes more likely and that enables
the retailer to order more quantity.

Second, we consider how the fraction of early-bird bargain hunters,
γ, affects the optimal profit and discounting policy. Fig. 17a describes
how the optimal profit changes with the inventory of old product under
different values of γ. We find that when γ is very low (γ ≈ 0) or very
high (γ ≈ 1), the optimal profit is smooth and concave in the inventory
of old product; however, it is piecewise concave for intermediate values
of γ. Fig. 17b shows that the optimal profit for a given state (the
inventory of old product is zero) is increasing in γ which indicates that

Fig. 14. Optimal profits for different values of b, (a) Variation of optimal profits with inventory of old product, (b) Optimal profit when inventory of old product is five units.

Fig. 15. Optimal discount for different values of b, (a) Variation of optimal discount with inventory of old product, (b) Optimal discount when inventory of old product is seven units.

Fig. 16. Optimal order quantity, when inventory of old product is five units, for different
values of b.
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more early-bird bargain hunters in the new pool benefit the retailer.
Further, the increase in profit is higher for higher values of γ which
shows increasing returns in the optimal profit vis-a-vis γ. This result is
opposite to the diminishing returns we observe earlier for the
advertising effectiveness b, and it indicates that increasing the propor-
tion of “early-bird” customers is much more important.

Fig. 18 shows how the optimal discount and order quantities
change with the inventory of old product, under different values of γ.
We find two results to be interesting. First, we find that order quantity
can increase with the inventory of old product (when γ = 0). This result
is fundamentally different from what we observe in Models A and B in
which it always decreases with the inventory of old product. The
retailer discounts more and also increases the order quantity even
with a higher inventory due to the presence of a significant new pool
of customers who only want the old product. Second, we find that the
variation of optimal discount with inventory exhibits two types of
patterns. It is increasing when γ is high, which is explained by the
significant benefit from the new pool of customers, which makes the
retailer to keep offering more discounts with higher inventory. It first
increases, then decreases, and again increases in the inventory of old

Fig. 17. Optimal profits for different values of γ, (a) Variation of optimal profits with inventory of old product, (b) Optimal profit when inventory of old product is zero.

Fig. 18. Variation of optimal discount and order quantity with the inventory of old product, under different values of γ.

Fig. 19. Optimal order quantity, when inventory of old product is 12, for different values
of γ.
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product. The initial increase and the decrease later are akin to what
happens in Model B. However, when the inventory increases further,
the optimal discount actually increases. That is because the new pool of
customers makes more discounting profitable by driving more custo-
mers from the base demand (who prefer old product to new product
but find it out of stock) toward the new product.

Fig. 19 shows how the optimal order quantity, when the inventory
of old product is 12, changes with γ. It is always increasing in γ because
the retailer orders more with higher fraction of early-bird customers
from the new pool. Further, it is S-shaped and increases much more for
intermediate values of γ than when γ is low or high. Figures 20a and
20b show how the optimal discount changes for a given state: inventory
of old product are 1 unit and 21 units respectively. In Fig. 20a, in which
the inventory is low, the optimal discount first increases and then
decreases in γ. This trend is explained as follows: when γ is low, the
retailer takes advantage of an increase in γ by offering more discount
and increasing the new pool of customers as well; however, when γ is
high, because the inventory is low, the retailer reduces the discount as γ
increases. In other words, when the inventory of old product is low, γ

and the discount are compliments when γ is low but they become
substitutes under high values of γ. In Fig. 20b, because the inventory is
high, discount and γ always act as compliments in helping the retailer
sell the old product, and so the optimal discount is increasing in γ.

Based on the analysis in Section 4.3, we make the following key
observations.

Observation 4. The optimal order quantity can increase in the
inventory of old product due to the presence of a new pool of
customers. The optimal discount follows three kinds of patterns: (i) it
increases in the inventory, (ii) it first increases and then decreases, or
(iii) it initially increases, then decreases, and and again increases in the
inventory. The last one is different from what is observed in Model B
and is explained by the presence of new pool of customers.

Observation 5. As the advertising effect b increases, the optimal
values (for a given inventory) show the following trends. The optimal
order quantity and profit are both increasing with the latter forming a
S-curve. However, the optimal discount can be non-monotone; it first
increases and then decreases (e.g., see Fig. 15b).

Fig. 20. Variation of optimal discount with γ, (a) Inventory of old product s=1, (b) Inventory of old product s=22.

Fig. 21. Optimal policy for 3-period shelf life with D Bin∼ (20, 0.5)t .
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Observation 6. As the fraction of early-bird (bargain hunters)
customers γ increases, the optimal values (for a given inventory)
show the following trends. The optimal order quantity is increasing
and convex while the the optimal profit is increasing and forms a S-
curve. The optimal discount follows a complex pattern: if the inventory
is low it first increases and then decreases in γ, while if the inventory is
high it is monotonically increasing in γ.

4.4. Model D

The difference in Model D fromModel A is that shelf life need not be 2
periods, but n periods in general. To examine how longer shelf life affects
our earlier results, we consider n=3 and report our findings. We also
illustrate how Model A can be used to approximate Model D when n=4.

4.4.1. Structure of optimal policy
Unlike Model A, an n-period shelf life requires the retailer to keep

track of more than one state variables in each period, which compli-
cates the analysis of the dynamic program. For illustration, we consider
n=3 which results in two state variables; namely, the inventory of one-
period old products and the inventory of two-period old products. For
the various demand distributions we considered (uniform, binomial,
negative binomial), we find that the optimal order quantity, discount-
ing policy and profit do not behave as in Model A with respect to the
total inventory of old products. This is because the age mix of the old
products also affects the optimal decisions. Moreover, for a fixed value
of either state variable, the optimal discounting policy is also not a
threshold policy in the other state variable. Figs. 21 and 22 provide
examples for binomial and negative binomial demand distributions,
respectively. We observe similar patterns for n > 3.

4.4.2. Model A as approximation
In this subsection, we consider a product with a 4-period shelf life.

Here, the optimal solution can be obtained by solving Model D.
However, suppose the retailer restricts herself (or is restricted) to
make decisions only in alternating periods, say periods
T T T, − 2, − 4, …. During the other periods, she does not place any
order, i.e. qt=0, and she does not change her discounting decision, i.e.
y y=t t 1+ . The problem can still be solved using (5) in Model D with

some modification. Specifically, it can be modeled as follows.
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where Λ q q t T T Ty y y y( ) = {( , )| = 0, = if ∈ { − 1, − 3, − 5, …}}t tt 1 t t t 1+ + .
While Model (6) maintains a 3-dimensional state space, we propose

an equivalent formulation using only a one-dimensional state space.
For ease of exposition, we assume T is even.

Theorem 1. Model (6) is equivalent to (1) in Model A with T replaced
by T T′ = /2 and Dt replaced by D D D′ = +t t t2 2 −1 with cdf Φ′, the 2-fold
convolution of Φ.

Proof. Observe that s s s q s ss M= [ , , ]′ = ([ , , ]′ − )t t t t t tt t 1,1 ,2 ,3 +1 +1,1 +1,2 +
+.

At each decision epoch t T T T∈ { − 1, − 3, − 5, …}, we know that
s = 0t,1 because q = 0t+1 . Because t T T T+ 2 ∈ { − 1, − 3, − 5, …}, we
also have s = 0t+2,1 . This implies that s = 0t+1,2 . Hence, for any period

Fig. 22. Optimal policy for 3-period shelf life with D NB∼ (7, 0.8)t .

Fig. 23. Optimality loss for Model A approximation for n=4, c=0.5, δ = 0.15 and
D U∼ [0, 7]t .
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t T T T∈ { − 1, − 3, − 5, …}, only st,2 is possibly nonzero. This means
that at each decision epoch, there is only one relevant state variable.
Then it is easy to see that this problem is equivalent to Model A with
number of decision epochs half the number of periods, the duration of
each epoch is two periods, and the demand between consecutive epochs
is the sum of demands from two consecutive periods. □

This result is meaningful because it allows us to solve a 4-period
shelf life problem using a 2-period shelf life approximation. Naturally,
we want to know how much is the optimality loss due to such
approximation. In Fig. 23, we find that the reduction in profit is not
substantial (e.g. it does not exceed 4.3%). This finding is interesting
because it implies that Model A is a sufficient approximation for Model
D. Furthermore, it provides justification for assuming n=2 in Models B
and C as the optimality loss is sufficiently low to justify the insights one
can obtain from these 2-period models.

Based on the results presented above, we summarize the following
observation about Model D:

Observation 7. The structure of the optimal policy observed in Model
A no longer holds for Model D. Nonetheless, Model A can be a good
approximation for Model D with minimal optimality loss.

5. Conclusion

In this paper, we study a periodic-review inventory problem for a
perishable product with limited shelf life. In addition to replenishment
decisions, the retailer can offer a discount to attract customers to older
units. We consider four models with different customer characteristics. In
the base model with shelf life of two periods and an exogenous discount,
we find that the optimal discounting policy is a threshold policy while the
optimal order quantity decreases in the inventory of old units with a
significant decrease at the threshold. We also investigate the effect of the
degree of demand uncertainty on the optimal decisions. Moreover, we
find that partial discounting where the retailer decides on the number of
old units to discount is never optimal. Extending this model to allow the
retailer to decide on the discount subsequently affecting the fraction of
customers preferring old units, we find that the optimal discount first
increases and then decreases (eventually to zero) in the inventory of old
units, while the threshold increases in discount sensitivity. Compared to
exogenous discount, the increase in profits in generally not significant
and the threshold is higher. Extending the model further to allow a new
pool of customers to be attracted solely to the old units, we also consider
the effect of two new parameters; namely, advertising effectiveness and
the fraction of bargain hunters (new customers who beat the original
customers to the old products). In this setting, the optimal order quantity
increases in the inventory of old units due to the presence of new
customers. As advertising effectiveness increases, optimal order quantity
and profit increases while the optimal discount can be non-monotone. As
fraction of bargain hunters increases, optimal order quantity increases in
a convex fashion, the optimal profit also increases while the optimal
discount behaves in certain patterns according to whether the inventory
of old units is low or high. Finally, extending the base model to shelf life
longer than two periods, we observe that the structure of the optimal
policy no longer holds. However, we find that the base model can be used
to approximate say a four-period problem with minimal optimality loss.
This suggests that one can learn insights from two-period models without
too much reduction in profits. Nonetheless, the option to set the discount
and the presence of bargain hunters for products with shelf life longer
than two periods are also interesting to study and analytically challenging
to characterize optimally. We leave this issue to future research.
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